📄 discretize.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * Discretize.java * Copyright (C) 1999 Eibe Frank,Len Trigg * */package weka.filters.supervised.attribute;import weka.core.Attribute;import weka.core.Capabilities;import weka.core.ContingencyTables;import weka.core.FastVector;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.Range;import weka.core.SparseInstance;import weka.core.SpecialFunctions;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.WeightedInstancesHandler;import weka.core.Capabilities.Capability;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import weka.filters.Filter;import weka.filters.SupervisedFilter;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * An instance filter that discretizes a range of numeric attributes in the dataset into nominal attributes. Discretization is by Fayyad & Irani's MDL method (the default).<br/> * <br/> * For more information, see:<br/> * <br/> * Usama M. Fayyad, Keki B. Irani: Multi-interval discretization of continuousvalued attributes for classification learning. In: Thirteenth International Joint Conference on Articial Intelligence, 1022-1027, 1993.<br/> * <br/> * Igor Kononenko: On Biases in Estimating Multi-Valued Attributes. In: 14th International Joint Conference on Articial Intelligence, 1034-1040, 1995. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @inproceedings{Fayyad1993, * author = {Usama M. Fayyad and Keki B. Irani}, * booktitle = {Thirteenth International Joint Conference on Articial Intelligence}, * pages = {1022-1027}, * publisher = {Morgan Kaufmann Publishers}, * title = {Multi-interval discretization of continuousvalued attributes for classification learning}, * volume = {2}, * year = {1993} * } * * @inproceedings{Kononenko1995, * author = {Igor Kononenko}, * booktitle = {14th International Joint Conference on Articial Intelligence}, * pages = {1034-1040}, * title = {On Biases in Estimating Multi-Valued Attributes}, * year = {1995}, * PS = {http://ai.fri.uni-lj.si/papers/kononenko95-ijcai.ps.gz} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -R <col1,col2-col4,...> * Specifies list of columns to Discretize. First and last are valid indexes. * (default none)</pre> * * <pre> -V * Invert matching sense of column indexes.</pre> * * <pre> -D * Output binary attributes for discretized attributes.</pre> * * <pre> -E * Use better encoding of split point for MDL.</pre> * * <pre> -K * Use Kononenko's MDL criterion.</pre> * <!-- options-end --> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.6 $ */public class Discretize extends Filter implements SupervisedFilter, OptionHandler, WeightedInstancesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -3141006402280129097L; /** Stores which columns to Discretize */ protected Range m_DiscretizeCols = new Range(); /** Store the current cutpoints */ protected double [][] m_CutPoints = null; /** Output binary attributes for discretized attributes. */ protected boolean m_MakeBinary = false; /** Use better encoding of split point for MDL. */ protected boolean m_UseBetterEncoding = false; /** Use Kononenko's MDL criterion instead of Fayyad et al.'s */ protected boolean m_UseKononenko = false; /** Constructor - initialises the filter */ public Discretize() { setAttributeIndices("first-last"); } /** * Gets an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(7); newVector.addElement(new Option( "\tSpecifies list of columns to Discretize. First" + " and last are valid indexes.\n" + "\t(default none)", "R", 1, "-R <col1,col2-col4,...>")); newVector.addElement(new Option( "\tInvert matching sense of column indexes.", "V", 0, "-V")); newVector.addElement(new Option( "\tOutput binary attributes for discretized attributes.", "D", 0, "-D")); newVector.addElement(new Option( "\tUse better encoding of split point for MDL.", "E", 0, "-E")); newVector.addElement(new Option( "\tUse Kononenko's MDL criterion.", "K", 0, "-K")); return newVector.elements(); } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -R <col1,col2-col4,...> * Specifies list of columns to Discretize. First and last are valid indexes. * (default none)</pre> * * <pre> -V * Invert matching sense of column indexes.</pre> * * <pre> -D * Output binary attributes for discretized attributes.</pre> * * <pre> -E * Use better encoding of split point for MDL.</pre> * * <pre> -K * Use Kononenko's MDL criterion.</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setMakeBinary(Utils.getFlag('D', options)); setUseBetterEncoding(Utils.getFlag('E', options)); setUseKononenko(Utils.getFlag('K', options)); setInvertSelection(Utils.getFlag('V', options)); String convertList = Utils.getOption('R', options); if (convertList.length() != 0) { setAttributeIndices(convertList); } else { setAttributeIndices("first-last"); } if (getInputFormat() != null) { setInputFormat(getInputFormat()); } } /** * Gets the current settings of the filter. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] options = new String [12]; int current = 0; if (getMakeBinary()) { options[current++] = "-D"; } if (getUseBetterEncoding()) { options[current++] = "-E"; } if (getUseKononenko()) { options[current++] = "-K"; } if (getInvertSelection()) { options[current++] = "-V"; } if (!getAttributeIndices().equals("")) { options[current++] = "-R"; options[current++] = getAttributeIndices(); } while (current < options.length) { options[current++] = ""; } return options; } /** * Returns the Capabilities of this filter. * * @return the capabilities of this object * @see Capabilities */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // attributes result.enableAllAttributes(); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); return result; } /** * Sets the format of the input instances. * * @param instanceInfo an Instances object containing the input instance * structure (any instances contained in the object are ignored - only the * structure is required). * @return true if the outputFormat may be collected immediately * @throws Exception if the input format can't be set successfully */ public boolean setInputFormat(Instances instanceInfo) throws Exception { super.setInputFormat(instanceInfo); m_DiscretizeCols.setUpper(instanceInfo.numAttributes() - 1); m_CutPoints = null; // If we implement loading cutfiles, then load //them here and set the output format return false; } /** * Input an instance for filtering. Ordinarily the instance is processed * and made available for output immediately. Some filters require all * instances be read before producing output. * * @param instance the input instance * @return true if the filtered instance may now be * collected with output(). * @throws IllegalStateException if no input format has been defined. */ public boolean input(Instance instance) { if (getInputFormat() == null) { throw new IllegalStateException("No input instance format defined"); } if (m_NewBatch) { resetQueue(); m_NewBatch = false; } if (m_CutPoints != null) { convertInstance(instance); return true; } bufferInput(instance); return false; } /** * Signifies that this batch of input to the filter is finished. If the * filter requires all instances prior to filtering, output() may now * be called to retrieve the filtered instances. * * @return true if there are instances pending output * @throws IllegalStateException if no input structure has been defined */ public boolean batchFinished() { if (getInputFormat() == null) { throw new IllegalStateException("No input instance format defined"); } if (m_CutPoints == null) { calculateCutPoints(); setOutputFormat(); // If we implement saving cutfiles, save the cuts here // Convert pending input instances for(int i = 0; i < getInputFormat().numInstances(); i++) { convertInstance(getInputFormat().instance(i)); } } flushInput(); m_NewBatch = true; return (numPendingOutput() != 0); } /** * Returns a string describing this filter * * @return a description of the filter suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "An instance filter that discretizes a range of numeric" + " attributes in the dataset into nominal attributes." + " Discretization is by Fayyad & Irani's MDL method (the default).\n\n" + "For more information, see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; TechnicalInformation additional; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Usama M. Fayyad and Keki B. Irani"); result.setValue(Field.TITLE, "Multi-interval discretization of continuousvalued attributes for classification learning"); result.setValue(Field.BOOKTITLE, "Thirteenth International Joint Conference on Articial Intelligence"); result.setValue(Field.YEAR, "1993"); result.setValue(Field.VOLUME, "2"); result.setValue(Field.PAGES, "1022-1027"); result.setValue(Field.PUBLISHER, "Morgan Kaufmann Publishers"); additional = result.add(Type.INPROCEEDINGS); additional.setValue(Field.AUTHOR, "Igor Kononenko"); additional.setValue(Field.TITLE, "On Biases in Estimating Multi-Valued Attributes"); additional.setValue(Field.BOOKTITLE, "14th International Joint Conference on Articial Intelligence"); additional.setValue(Field.YEAR, "1995"); additional.setValue(Field.PAGES, "1034-1040"); additional.setValue(Field.PS, "http://ai.fri.uni-lj.si/papers/kononenko95-ijcai.ps.gz"); return result; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String makeBinaryTipText() { return "Make resulting attributes binary."; } /** * Gets whether binary attributes should be made for discretized ones. * * @return true if attributes will be binarized */ public boolean getMakeBinary() { return m_MakeBinary; } /** * Sets whether binary attributes should be made for discretized ones. * * @param makeBinary if binary attributes are to be made */ public void setMakeBinary(boolean makeBinary) { m_MakeBinary = makeBinary; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useKononenkoTipText() { return "Use Kononenko's MDL criterion. If set to false" + " uses the Fayyad & Irani criterion."; } /** * Gets whether Kononenko's MDL criterion is to be used. * * @return true if Kononenko's criterion will be used. */ public boolean getUseKononenko() { return m_UseKononenko; } /** * Sets whether Kononenko's MDL criterion is to be used. * * @param useKon true if Kononenko's one is to be used */ public void setUseKononenko(boolean useKon) { m_UseKononenko = useKon; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useBetterEncodingTipText() { return "Uses a more efficient split point encoding."; } /** * Gets whether better encoding is to be used for MDL. * * @return true if the better MDL encoding will be used */ public boolean getUseBetterEncoding() { return m_UseBetterEncoding; } /** * Sets whether better encoding is to be used for MDL. * * @param useBetterEncoding true if better encoding to be used. */ public void setUseBetterEncoding(boolean useBetterEncoding) { m_UseBetterEncoding = useBetterEncoding; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String invertSelectionTipText() { return "Set attribute selection mode. If false, only selected" + " (numeric) attributes in the range will be discretized; if" + " true, only non-selected attributes will be discretized."; } /** * Gets whether the supplied columns are to be removed or kept
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -