⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 m5rules.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    M5Rules.java *    Copyright (C) 2001 Mark Hall */package weka.classifiers.rules;import weka.classifiers.trees.m5.M5Base;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;/** <!-- globalinfo-start --> * Generates a decision list for regression problems using separate-and-conquer. In each iteration it builds a model tree using M5 and makes the "best" leaf into a rule.<br/> * <br/> * For more information see:<br/> * <br/> * Geoffrey Holmes, Mark Hall, Eibe Frank: Generating Rule Sets from Model Trees. In: Twelfth Australian Joint Conference on Artificial Intelligence, 1-12, 1999.<br/> * <br/> * Ross J. Quinlan: Learning with Continuous Classes. In: 5th Australian Joint Conference on Artificial Intelligence, Singapore, 343-348, 1992.<br/> * <br/> * Y. Wang, I. H. Witten: Induction of model trees for predicting continuous classes. In: Poster papers of the 9th European Conference on Machine Learning, 1997. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * &#64;inproceedings{Holmes1999, *    author = {Geoffrey Holmes and Mark Hall and Eibe Frank}, *    booktitle = {Twelfth Australian Joint Conference on Artificial Intelligence}, *    pages = {1-12}, *    publisher = {Springer}, *    title = {Generating Rule Sets from Model Trees}, *    year = {1999} * } *  * &#64;inproceedings{Quinlan1992, *    address = {Singapore}, *    author = {Ross J. Quinlan}, *    booktitle = {5th Australian Joint Conference on Artificial Intelligence}, *    pages = {343-348}, *    publisher = {World Scientific}, *    title = {Learning with Continuous Classes}, *    year = {1992} * } *  * &#64;inproceedings{Wang1997, *    author = {Y. Wang and I. H. Witten}, *    booktitle = {Poster papers of the 9th European Conference on Machine Learning}, *    publisher = {Springer}, *    title = {Induction of model trees for predicting continuous classes}, *    year = {1997} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -N *  Use unpruned tree/rules</pre> *  * <pre> -U *  Use unsmoothed predictions</pre> *  * <pre> -R *  Build regression tree/rule rather than a model tree/rule</pre> *  * <pre> -M &lt;minimum number of instances&gt; *  Set minimum number of instances per leaf *  (default 4)</pre> *  <!-- options-end --> * * @author <a href="mailto:mhall@cs.waikato.ac.nz">Mark Hall</a> * @version $Revision: 1.9 $ */public class M5Rules   extends M5Base  implements TechnicalInformationHandler {      /** for serialization */  static final long serialVersionUID = -1746114858746563180L;    /**   * Returns a string describing classifier   * @return a description suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "Generates a decision list for regression problems using "       + "separate-and-conquer. In each iteration it builds a "      + "model tree using M5 and makes the \"best\" "      + "leaf into a rule.\n\n"      + "For more information see:\n\n"      + getTechnicalInformation().toString();  }  /**   * Constructor   */  public M5Rules() {    super();    setGenerateRules(true);  }  /**   * Returns an instance of a TechnicalInformation object, containing    * detailed information about the technical background of this class,   * e.g., paper reference or book this class is based on.   *    * @return the technical information about this class   */  public TechnicalInformation getTechnicalInformation() {    TechnicalInformation 	result;        result = new TechnicalInformation(Type.INPROCEEDINGS);    result.setValue(Field.AUTHOR, "Geoffrey Holmes and Mark Hall and Eibe Frank");    result.setValue(Field.TITLE, "Generating Rule Sets from Model Trees");    result.setValue(Field.BOOKTITLE, "Twelfth Australian Joint Conference on Artificial Intelligence");    result.setValue(Field.YEAR, "1999");    result.setValue(Field.PAGES, "1-12");    result.setValue(Field.PUBLISHER, "Springer");        result.add(super.getTechnicalInformation());        return result;  }  /**   * Main method by which this class can be tested   *    * @param args an array of options   */  public static void main(String[] args) {    runClassifier(new M5Rules(), args);  } }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -