⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 zeror.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    ZeroR.java *    Copyright (C) 1999 Eibe Frank * */package weka.classifiers.rules;import weka.classifiers.Classifier;import weka.core.Attribute;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.Utils;import weka.core.WeightedInstancesHandler;import weka.core.Capabilities.Capability;import java.util.Enumeration;/** <!-- globalinfo-start --> * Class for building and using a 0-R classifier. Predicts the mean (for a numeric class) or the mode (for a nominal class). * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  <!-- options-end --> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.14 $ */public class ZeroR   extends Classifier   implements WeightedInstancesHandler {  /** for serialization */  static final long serialVersionUID = 48055541465867954L;    /** The class value 0R predicts. */  private double m_ClassValue;  /** The number of instances in each class (null if class numeric). */  private double [] m_Counts;    /** The class attribute. */  private Attribute m_Class;      /**   * Returns a string describing classifier   * @return a description suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "Class for building and using a 0-R classifier. Predicts the mean "       + "(for a numeric class) or the mode (for a nominal class).";	      }  /**   * Returns default capabilities of the classifier.   *   * @return      the capabilities of this classifier   */  public Capabilities getCapabilities() {    Capabilities result = super.getCapabilities();    // attributes    result.enable(Capability.NOMINAL_ATTRIBUTES);    result.enable(Capability.NUMERIC_ATTRIBUTES);    result.enable(Capability.DATE_ATTRIBUTES);    result.enable(Capability.STRING_ATTRIBUTES);    result.enable(Capability.RELATIONAL_ATTRIBUTES);    result.enable(Capability.MISSING_VALUES);    // class    result.enable(Capability.NOMINAL_CLASS);    result.enable(Capability.NUMERIC_CLASS);    result.enable(Capability.DATE_CLASS);    result.enable(Capability.MISSING_CLASS_VALUES);    // instances    result.setMinimumNumberInstances(0);        return result;  }  /**   * Generates the classifier.   *   * @param instances set of instances serving as training data    * @exception Exception if the classifier has not been generated successfully   */  public void buildClassifier(Instances instances) throws Exception {    // can classifier handle the data?    getCapabilities().testWithFail(instances);    // remove instances with missing class    instances = new Instances(instances);    instances.deleteWithMissingClass();        double sumOfWeights = 0;    m_Class = instances.classAttribute();    m_ClassValue = 0;    switch (instances.classAttribute().type()) {      case Attribute.NUMERIC:        m_Counts = null;        break;      case Attribute.NOMINAL:        m_Counts = new double [instances.numClasses()];        for (int i = 0; i < m_Counts.length; i++) {          m_Counts[i] = 1;        }        sumOfWeights = instances.numClasses();        break;    }    Enumeration enu = instances.enumerateInstances();    while (enu.hasMoreElements()) {      Instance instance = (Instance) enu.nextElement();      if (!instance.classIsMissing()) {	if (instances.classAttribute().isNominal()) {	  m_Counts[(int)instance.classValue()] += instance.weight();	} else {	  m_ClassValue += instance.weight() * instance.classValue();	}	sumOfWeights += instance.weight();      }    }    if (instances.classAttribute().isNumeric()) {      if (Utils.gr(sumOfWeights, 0)) {	m_ClassValue /= sumOfWeights;      }    } else {      m_ClassValue = Utils.maxIndex(m_Counts);      Utils.normalize(m_Counts, sumOfWeights);    }  }  /**   * Classifies a given instance.   *   * @param instance the instance to be classified   * @return index of the predicted class   */  public double classifyInstance(Instance instance) {    return m_ClassValue;  }  /**   * Calculates the class membership probabilities for the given test instance.   *   * @param instance the instance to be classified   * @return predicted class probability distribution   * @exception Exception if class is numeric   */  public double [] distributionForInstance(Instance instance)        throws Exception {	     if (m_Counts == null) {      double[] result = new double[1];      result[0] = m_ClassValue;      return result;    } else {      return (double []) m_Counts.clone();    }  }    /**   * Returns a description of the classifier.   *   * @return a description of the classifier as a string.   */  public String toString() {    if (m_Class ==  null) {      return "ZeroR: No model built yet.";    }    if (m_Counts == null) {      return "ZeroR predicts class value: " + m_ClassValue;    } else {      return "ZeroR predicts class value: " + m_Class.value((int) m_ClassValue);    }  }  /**   * Main method for testing this class.   *   * @param argv the options   */  public static void main(String [] argv) {    runClassifier(new ZeroR(), argv);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -