⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 oner.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    OneR.java *    Copyright (C) 1999 Ian H. Witten * */package weka.classifiers.rules;import weka.classifiers.Classifier;import weka.core.Attribute;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.WekaException;import weka.core.Capabilities.Capability;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import java.io.Serializable;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * Class for building and using a 1R classifier; in other words, uses the minimum-error attribute for prediction, discretizing numeric attributes. For more information, see:<br/> * <br/> * R.C. Holte (1993). Very simple classification rules perform well on most commonly used datasets. Machine Learning. 11:63-91. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * &#64;article{Holte1993, *    author = {R.C. Holte}, *    journal = {Machine Learning}, *    pages = {63-91}, *    title = {Very simple classification rules perform well on most commonly used datasets}, *    volume = {11}, *    year = {1993} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -B &lt;minimum bucket size&gt; *  The minimum number of objects in a bucket (default: 6).</pre> *  <!-- options-end --> *  * @author Ian H. Witten (ihw@cs.waikato.ac.nz) * @version $Revision: 1.21 $ */public class OneR   extends Classifier   implements OptionHandler, TechnicalInformationHandler {      /** for serialization */  static final long serialVersionUID = -2459427002147861445L;    /**   * Returns a string describing classifier   * @return a description suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "Class for building and using a 1R classifier; in other words, uses "      + "the minimum-error attribute for prediction, discretizing numeric "      + "attributes. For more information, see:\n\n"      + getTechnicalInformation().toString();  }  /**   * Returns an instance of a TechnicalInformation object, containing    * detailed information about the technical background of this class,   * e.g., paper reference or book this class is based on.   *    * @return the technical information about this class   */  public TechnicalInformation getTechnicalInformation() {    TechnicalInformation 	result;        result = new TechnicalInformation(Type.ARTICLE);    result.setValue(Field.AUTHOR, "R.C. Holte");    result.setValue(Field.YEAR, "1993");    result.setValue(Field.TITLE, "Very simple classification rules perform well on most commonly used datasets");    result.setValue(Field.JOURNAL, "Machine Learning");    result.setValue(Field.VOLUME, "11");    result.setValue(Field.PAGES, "63-91");        return result;  }  /**   * Class for storing store a 1R rule.   */  private class OneRRule     implements Serializable {        /** for serialization */    static final long serialVersionUID = 1152814630957092281L;    /** The class attribute. */    private Attribute m_class;    /** The number of instances used for building the rule. */    private int m_numInst;    /** Attribute to test */    private Attribute m_attr;     /** Training set examples this rule gets right */    private int m_correct;     /** Predicted class for each value of attr */    private int[] m_classifications;     /** Predicted class for missing values */    private int m_missingValueClass = -1;     /** Breakpoints (numeric attributes only) */    private double[] m_breakpoints;       /**     * Constructor for nominal attribute.     *      * @param data the data to work with     * @param attribute the attribute to use     * @throws Exception if something goes wrong     */    public OneRRule(Instances data, Attribute attribute) throws Exception {      m_class = data.classAttribute();      m_numInst = data.numInstances();      m_attr = attribute;      m_correct = 0;      m_classifications = new int[m_attr.numValues()];    }    /**     * Constructor for numeric attribute.     *      * @param data the data to work with     * @param attribute the attribute to use     * @param nBreaks the break point     * @throws Exception if something goes wrong     */    public OneRRule(Instances data, Attribute attribute, int nBreaks) throws Exception {      m_class = data.classAttribute();      m_numInst = data.numInstances();      m_attr = attribute;      m_correct = 0;      m_classifications = new int[nBreaks];      m_breakpoints = new double[nBreaks - 1]; // last breakpoint is infinity    }        /**     * Returns a description of the rule.     *      * @return a string representation of the rule     */    public String toString() {      try {	StringBuffer text = new StringBuffer();	text.append(m_attr.name() + ":\n");	for (int v = 0; v < m_classifications.length; v++) {	  text.append("\t");	  if (m_attr.isNominal()) {	    text.append(m_attr.value(v));	  } else if (v < m_breakpoints.length) {	    text.append("< " + m_breakpoints[v]);	  } else if (v > 0) {	    text.append(">= " + m_breakpoints[v - 1]);	  } else {	    text.append("not ?");	  }	  text.append("\t-> " + m_class.value(m_classifications[v]) + "\n");	}	if (m_missingValueClass != -1) {	  text.append("\t?\t-> " + m_class.value(m_missingValueClass) + "\n");	}	text.append("(" + m_correct + "/" + m_numInst + " instances correct)\n");	return text.toString();      } catch (Exception e) {	return "Can't print OneR classifier!";      }    }  }    /** A 1-R rule */  private OneRRule m_rule;  /** The minimum bucket size */  private int m_minBucketSize = 6;  /**   * Classifies a given instance.   *   * @param inst the instance to be classified   * @return the classification of the instance   */  public double classifyInstance(Instance inst) {    int v = 0;    if (inst.isMissing(m_rule.m_attr)) {      if (m_rule.m_missingValueClass != -1) {	return m_rule.m_missingValueClass;      } else {	return 0;  // missing values occur in test but not training set          }    }    if (m_rule.m_attr.isNominal()) {      v = (int) inst.value(m_rule.m_attr);    } else {      while (v < m_rule.m_breakpoints.length &&	     inst.value(m_rule.m_attr) >= m_rule.m_breakpoints[v]) {	v++;      }    }    return m_rule.m_classifications[v];  }  /**   * Returns default capabilities of the classifier.   *   * @return      the capabilities of this classifier   */  public Capabilities getCapabilities() {    Capabilities result = super.getCapabilities();    // attributes    result.enable(Capability.NOMINAL_ATTRIBUTES);    result.enable(Capability.NUMERIC_ATTRIBUTES);    result.enable(Capability.DATE_ATTRIBUTES);    result.enable(Capability.MISSING_VALUES);    // class    result.enable(Capability.NOMINAL_CLASS);    result.enable(Capability.MISSING_CLASS_VALUES);    return result;  }  /**   * Generates the classifier.   *   * @param instances the instances to be used for building the classifier   * @throws Exception if the classifier can't be built successfully   */  public void buildClassifier(Instances instances)     throws Exception {        boolean noRule = true;    // can classifier handle the data?    getCapabilities().testWithFail(instances);    // remove instances with missing class

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -