⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 distributionutils.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    DistributionUtils.java *    Copyright (C) 2004 Stijn Lievens * */package weka.classifiers.misc.monotone;import weka.estimators.DiscreteEstimator;import java.util.Arrays;/**  * Class with some simple methods acting on  * <code> CumulativeDiscreteDistribution. </code> * All of the methods in this class are very easily implemented * and the main use of this class is to gather all these methods * in a single place.  It could be argued that some of the methods * should be implemented in the class  * <code> CumulativeDiscreteDistribution </code> itself. * <p> * This implementation is part of the master's thesis: "Studie * en implementatie van instantie-gebaseerde algoritmen voor gesuperviseerd * rangschikken", Stijn Lievens, Ghent University, 2004.  * </p> *  * @author Stijn Lievens (stijn.lievens@ugent.be) * @version $Revision: 1.1 $ */public class DistributionUtils {  /**   * Constant indicating the maximal number of classes   * for which there is a minimal and maximal distribution   * present in the pool.   * One of the purposes of this class is to serve as a factory   * for minimal and maximal cumulative probability distributions.   * Since instances of <code> CumulativeDiscreteDistribution </code>   * are immutable, we can create them beforehand and reuse them    * every time one is needed.     */  private static final int MAX_CLASSES = 20;  /**   * Array filled with minimal cumulative discrete probability   * distributions.  This means that probability one is given to the   * first element.  This array serves as a pool for the method   * <code> getMinimalCumulativeDiscreteDistribution. </code>   */  private static final CumulativeDiscreteDistribution[] m_minimalDistributions;  /**   * Array filled with maximal cumulative discrete probability   * distributions. This means that probability one is given to the   * largest element.  This array serves as a pool for the method   * <code> getMaximalCumulativeDiscreteDistribution. </code>   */  private static final CumulativeDiscreteDistribution[] m_maximalDistributions;  // fill both static arrays with the correct distributions  static {    m_minimalDistributions = new CumulativeDiscreteDistribution[MAX_CLASSES + 1];    m_maximalDistributions = new CumulativeDiscreteDistribution[MAX_CLASSES + 1];    for (int i = 1; i <= MAX_CLASSES; i++) {      double[] dd = new double[i];      dd[dd.length - 1] = 1;      m_maximalDistributions[i] = new CumulativeDiscreteDistribution(dd);      Arrays.fill(dd,1);      m_minimalDistributions[i] = new CumulativeDiscreteDistribution(dd);    }  }  /**    *  Compute a linear interpolation between the two given    *  <code> CumulativeDiscreteDistribution. </code>   *     *  @param cdf1 the first <code> CumulativeDiscreteDistribution </code>   *  @param cdf2 the second <code> CumulativeDiscreteDistribution </code>   *  @param s the interpolation parameter   *  @return (1 - s) &times; cdf1 + s &times; cdf2   *  @throws IllegalArgumentException if the two distributions   *  don't have the same size or if the parameter <code> s </code>   *  is not in the range [0,1]   */  public static CumulativeDiscreteDistribution interpolate(      CumulativeDiscreteDistribution cdf1,      CumulativeDiscreteDistribution cdf2, double s) throws IllegalArgumentException {    if (cdf1.getNumSymbols() != cdf2.getNumSymbols()) {       throw new IllegalArgumentException      ("CumulativeDiscreteDistributions don't have " 	  + "the same size");    }    if (s < 0 || s > 1) {      throw new IllegalArgumentException      ("Parameter s exceeds bounds");    }    double[] res = new double[cdf1.getNumSymbols()];    for (int i = 0, n = cdf1.getNumSymbols(); i < n; i++) {      res[i] = (1 - s) * cdf1.getCumulativeProbability(i) +      s * cdf2.getCumulativeProbability(i);    }    return new CumulativeDiscreteDistribution(res);  }  /**    *  Compute a linear interpolation between the two given    *  <code> CumulativeDiscreteDistribution. </code>   *     *  @param cdf1 the first <code> CumulativeDiscreteDistribution </code>   *  @param cdf2 the second <code> CumulativeDiscreteDistribution </code>   *  @param s the interpolation parameters, only the relevant number   *  of entries is used, so the array may be longer than the common   *  length of <code> cdf1 </code> and <code> cdf2 </code>   *  @return (1 - s) &times; cdf1 + s &times; cdf2, or more specifically   *  a distribution cd such that <code>    *  cd.getCumulativeProbability(i) =    *  (1-s[i]) &times; cdf1.getCumulativeProbability(i) +    *  s[i] &times; cdf2.getCumulativeProbability(i) </code>    *  @throws IllegalArgumentException if the two distributions   *  don't have the same size or if the array <code> s </code>   *  contains parameters not in the range <code> [0,1] </code>   */  public static CumulativeDiscreteDistribution interpolate(      CumulativeDiscreteDistribution cdf1,      CumulativeDiscreteDistribution cdf2, double[] s) throws IllegalArgumentException {    if (cdf1.getNumSymbols() != cdf2.getNumSymbols()) {       throw new IllegalArgumentException      ("CumulativeDiscreteDistributions don't have " 	  + "the same size");    }    if (cdf1.getNumSymbols() > s.length) {      throw new IllegalArgumentException      ("Array with interpolation parameters is not "	  + " long enough");    }    double[] res = new double[cdf1.getNumSymbols()];    for (int i = 0, n = cdf1.getNumSymbols(); i < n; i++) {      if (s[i] < 0 || s[i] > 1) {	throw new IllegalArgumentException	("Interpolation parameter exceeds bounds");      }      res[i] = (1 - s[i]) * cdf1.getCumulativeProbability(i) +      s[i] * cdf2.getCumulativeProbability(i);    }    return new CumulativeDiscreteDistribution(res);  }  /**    *  Compute a linear interpolation between the two given    *  <code> DiscreteDistribution. </code>   *     *  @param ddf1 the first <code> DiscreteDistribution </code>   *  @param ddf2 the second <code> DiscreteDistribution </code>   *  @param s the interpolation parameter   *  @return <code> (1 - s) &times; ddf1 + s &times; ddf2 </code>   *  @throws IllegalArgumentException if the two distributions   *  don't have the same size or if the parameter <code> s </code>   *  is not in the range [0,1]   */  public static DiscreteDistribution interpolate(      DiscreteDistribution ddf1,      DiscreteDistribution ddf2, double s) throws IllegalArgumentException {    if (ddf1.getNumSymbols() != ddf2.getNumSymbols()) {       throw new IllegalArgumentException      ("DiscreteDistributions don't have " 	  + "the same size");    }    if (s < 0 || s > 1) {      throw new IllegalArgumentException      ("Parameter s exceeds bounds");    }    double[] res = new double[ddf1.getNumSymbols()];    for (int i = 0, n = ddf1.getNumSymbols(); i < n; i++) {      res[i] = (1 - s) * ddf1.getProbability(i) +      s * ddf2.getProbability(i);    }    return new DiscreteDistribution(res);  }  /**   * Create a new <code> CumulativeDiscreteDistribution </code>   * that is the minimum of the two given <code>   * CumulativeDiscreteDistribution. </code>   * Each component of the resulting probability distribution    * is the minimum of the two corresponding components. <br/>   * Note: despite of its name, the returned cumulative probability   * distribution dominates both the arguments of this method.   *   * @param cdf1 first <code> CumulativeDiscreteDistribution </code>   * @param cdf2 second <code> CumulativeDiscreteDistribution </code>   * @return the minimum of the two distributions   * @throws IllegalArgumentException if the two distributions   * dont't have the same length   */  public static CumulativeDiscreteDistribution takeMin(      CumulativeDiscreteDistribution cdf1,      CumulativeDiscreteDistribution cdf2) throws IllegalArgumentException {        if (cdf1.getNumSymbols() != cdf2.getNumSymbols() )      throw new IllegalArgumentException      ("Cumulative distributions don't have the same length");    double[] cdf = new double[cdf1.getNumSymbols()];    int n = cdf.length;    for (int i = 0; i < n; i++) {       cdf[i] = Math.min(cdf1.getCumulativeProbability(i),	  cdf2.getCumulativeProbability(i));    }    return new CumulativeDiscreteDistribution(cdf);  }  /**   * Create a new <code> CumulativeDiscreteDistribution </code>   * that is the maximum of the two given <code>   * CumulativeDiscreteDistribution. </code>   * Each component of the resulting probability distribution    * is the maximum of the two corresponding components.   * Note: despite of its name, the returned cumulative probability   * distribution is dominated by both the arguments of this method.   *   * @param cdf1 first <code> CumulativeDiscreteDistribution </code>   * @param cdf2 second <code> CumulativeDiscreteDistribution </code>   * @return the maximum of the two distributions   * @throws IllegalArgumentException if the two distributions   * dont't have the same length   */  public static CumulativeDiscreteDistribution takeMax(      CumulativeDiscreteDistribution cdf1,      CumulativeDiscreteDistribution cdf2) throws IllegalArgumentException {        if (cdf1.getNumSymbols() != cdf2.getNumSymbols() )      throw new IllegalArgumentException      ("Cumulative distributions don't have the same length");    double[] cdf = new double[cdf1.getNumSymbols()];    int n = cdf.length;    for (int i = 0; i < n; i++) {       cdf[i] = Math.max(cdf1.getCumulativeProbability(i),	  cdf2.getCumulativeProbability(i));    }    return new CumulativeDiscreteDistribution(cdf);  }  /**   * Converts a <code> DiscreteEstimator </code> to an array of    * doubles.   *   * @param df the <code> DiscreteEstimator </code> to be converted   * @return an array of doubles representing the    * <code> DiscreteEstimator </code>   */  public static double[] getDistributionArray(DiscreteEstimator df) {    double[] dfa = new double[df.getNumSymbols()];    for (int i = 0; i < dfa.length; i++) {      dfa[i] = df.getProbability(i);    }    return dfa;  }  /**   * Get the minimal <code> CumulativeDiscreteDistribution </code>   * over <code> numClasses </code> elements.  This means that   * a probability of one is assigned to the first element.   *   * @param numClasses the number of elements    * @return the minimal <code> CumulativeDiscreteDistribution </code>   * over the requested number of elements   * @throws IllegalArgumentException if <code> numClasses </code>    * is smaller or equal than 0   */  public static CumulativeDiscreteDistribution getMinimalCumulativeDiscreteDistribution(      int numClasses) throws IllegalArgumentException {        if (numClasses <= 0) {      throw new IllegalArgumentException      ("Number of elements must be positive");    }    if (numClasses <= MAX_CLASSES) {      return m_minimalDistributions[numClasses];    }    double[] dd = new double[numClasses];    Arrays.fill(dd,1);    return new CumulativeDiscreteDistribution(dd);  }  /**   * Get the maximal <code> CumulativeDiscreteDistribution </code>   * over <code> numClasses </code> elements.  This means that   * a probability of one is assigned to the last class.   *   * @param numClasses the number of elements    * @return the maximal <code> CumulativeDiscreteDistribution </code>   * over the requested number of elements   * @throws IllegalArgumentException if <code> numClasses </code>    * is smaller or equal than 0   */  public static CumulativeDiscreteDistribution getMaximalCumulativeDiscreteDistribution(      int numClasses) throws IllegalArgumentException {        if (numClasses <= 0) {      throw new IllegalArgumentException      ("Number of elements must be positive");    }    if (numClasses <= MAX_CLASSES) {      return m_maximalDistributions[numClasses];    }    double[] dd = new double[numClasses];    dd[dd.length - 1] = 1;    return new CumulativeDiscreteDistribution(dd);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -