⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nominallossfunction.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    NominalLossFunction.java *    Copyright (C) 2004 Stijn Lievens * */package weka.classifiers.misc.monotone;/** * Interface for incorporating different loss functions. * <p> * This interface contains only one method, namely <code> loss * </code> that measures the error between an actual class * value <code> actual </code> and a predicted value <code> * predicted. </code>  It is understood that the return value * of this method is always be positive and that it is zero * if and only if the actual and the predicted value coincide. * </p> * <p> * This implementation is done as part of the master's thesis: "Studie * en implementatie van instantie-gebaseerde algoritmen voor gesuperviseerd * rangschikken", Stijn Lievens, Ghent University, 2004.  * </p> *  * @author Stijn Lievens (stijn.lievens@ugent.be) * @version $Revision: 1.1 $ */public interface NominalLossFunction {  /**   * Calculate the loss between an actual and a predicted class value.   *   * @param actual the actual class value   * @param predicted the predicted class value   * @return a measure for the error of making the prediction   * <code> predicted </code> instead of <code> actual </code>   */  public double loss(double actual, double predicted);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -