📄 miboost.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * MIBoost.java * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand * */package weka.classifiers.mi;import weka.classifiers.Classifier;import weka.classifiers.SingleClassifierEnhancer;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.MultiInstanceCapabilitiesHandler;import weka.core.Optimization;import weka.core.Option;import weka.core.OptionHandler;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.WeightedInstancesHandler;import weka.core.Capabilities.Capability;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import weka.filters.Filter;import weka.filters.unsupervised.attribute.Discretize;import weka.filters.unsupervised.attribute.MultiInstanceToPropositional;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * MI AdaBoost method, considers the geometric mean of posterior of instances inside a bag (arithmatic mean of log-posterior) and the expectation for a bag is taken inside the loss function.<br/> * <br/> * For more information about Adaboost, see:<br/> * <br/> * Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @inproceedings{Freund1996, * address = {San Francisco}, * author = {Yoav Freund and Robert E. Schapire}, * booktitle = {Thirteenth International Conference on Machine Learning}, * pages = {148-156}, * publisher = {Morgan Kaufmann}, * title = {Experiments with a new boosting algorithm}, * year = {1996} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -D * Turn on debugging output.</pre> * * <pre> -B <num> * The number of bins in discretization * (default 0, no discretization)</pre> * * <pre> -R <num> * Maximum number of boost iterations. * (default 10)</pre> * * <pre> -W <class name> * Full name of classifier to boost. * eg: weka.classifiers.bayes.NaiveBayes</pre> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * <!-- options-end --> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Xin Xu (xx5@cs.waikato.ac.nz) * @version $Revision: 1.5 $ */public class MIBoost extends SingleClassifierEnhancer implements OptionHandler, MultiInstanceCapabilitiesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -3808427225599279539L; /** the models for the iterations */ protected Classifier[] m_Models; /** The number of the class labels */ protected int m_NumClasses; /** Class labels for each bag */ protected int[] m_Classes; /** attributes name for the new dataset used to build the model */ protected Instances m_Attributes; /** Number of iterations */ private int m_NumIterations = 100; /** Voting weights of models */ protected double[] m_Beta; /** the maximum number of boost iterations */ protected int m_MaxIterations = 10; /** the number of discretization bins */ protected int m_DiscretizeBin = 0; /** filter used for discretization */ protected Discretize m_Filter = null; /** filter used to convert the MI dataset into single-instance dataset */ protected MultiInstanceToPropositional m_ConvertToSI = new MultiInstanceToPropositional(); /** * Returns a string describing this filter * * @return a description of the filter suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "MI AdaBoost method, considers the geometric mean of posterior " + "of instances inside a bag (arithmatic mean of log-posterior) and " + "the expectation for a bag is taken inside the loss function.\n\n" + "For more information about Adaboost, see:\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Yoav Freund and Robert E. Schapire"); result.setValue(Field.TITLE, "Experiments with a new boosting algorithm"); result.setValue(Field.BOOKTITLE, "Thirteenth International Conference on Machine Learning"); result.setValue(Field.YEAR, "1996"); result.setValue(Field.PAGES, "148-156"); result.setValue(Field.PUBLISHER, "Morgan Kaufmann"); result.setValue(Field.ADDRESS, "San Francisco"); return result; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector result = new Vector(); result.addElement(new Option( "\tTurn on debugging output.", "D", 0, "-D")); result.addElement(new Option( "\tThe number of bins in discretization\n" + "\t(default 0, no discretization)", "B", 1, "-B <num>")); result.addElement(new Option( "\tMaximum number of boost iterations.\n" + "\t(default 10)", "R", 1, "-R <num>")); result.addElement(new Option( "\tFull name of classifier to boost.\n" + "\teg: weka.classifiers.bayes.NaiveBayes", "W", 1, "-W <class name>")); Enumeration enu = ((OptionHandler)m_Classifier).listOptions(); while (enu.hasMoreElements()) { result.addElement(enu.nextElement()); } return result.elements(); } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -D * Turn on debugging output.</pre> * * <pre> -B <num> * The number of bins in discretization * (default 0, no discretization)</pre> * * <pre> -R <num> * Maximum number of boost iterations. * (default 10)</pre> * * <pre> -W <class name> * Full name of classifier to boost. * eg: weka.classifiers.bayes.NaiveBayes</pre> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setDebug(Utils.getFlag('D', options)); String bin = Utils.getOption('B', options); if (bin.length() != 0) { setDiscretizeBin(Integer.parseInt(bin)); } else { setDiscretizeBin(0); } String boostIterations = Utils.getOption('R', options); if (boostIterations.length() != 0) { setMaxIterations(Integer.parseInt(boostIterations)); } else { setMaxIterations(10); } super.setOptions(options); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; String[] options; int i; result = new Vector(); result.add("-R"); result.add("" + getMaxIterations()); result.add("-B"); result.add("" + getDiscretizeBin()); options = super.getOptions(); for (i = 0; i < options.length; i++) result.add(options[i]); return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String maxIterationsTipText() { return "The maximum number of boost iterations."; } /** * Set the maximum number of boost iterations * * @param maxIterations the maximum number of boost iterations */ public void setMaxIterations(int maxIterations) { m_MaxIterations = maxIterations; } /** * Get the maximum number of boost iterations * * @return the maximum number of boost iterations */ public int getMaxIterations() { return m_MaxIterations; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String discretizeBinTipText() { return "The number of bins in discretization."; } /** * Set the number of bins in discretization * * @param bin the number of bins in discretization */ public void setDiscretizeBin(int bin) { m_DiscretizeBin = bin; } /** * Get the number of bins in discretization * * @return the number of bins in discretization */ public int getDiscretizeBin() { return m_DiscretizeBin; } private class OptEng
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -