⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 simplemi.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * SimpleMI.java * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand */package weka.classifiers.mi;import weka.classifiers.SingleClassifierEnhancer;import weka.core.Attribute;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.MultiInstanceCapabilitiesHandler;import weka.core.Option;import weka.core.OptionHandler;import weka.core.SelectedTag;import weka.core.Tag;import weka.core.Utils;import weka.core.Capabilities.Capability;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * Reduces MI data into mono-instance data. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -M [1|2|3] *  The method used in transformation: *  1.arithmatic average; 2.geometric centor; *  3.using minimax combined features of a bag (default: 1) *  *  Method 3: *  Define s to be the vector of the coordinate-wise maxima *  and minima of X, ie.,  *  s(X)=(minx1, ..., minxm, maxx1, ...,maxxm), transform *  the exemplars into mono-instance which contains attributes *  s(X)</pre> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  * <pre> -W *  Full name of base classifier. *  (default: weka.classifiers.rules.ZeroR)</pre> *  * <pre>  * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  <!-- options-end --> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Xin Xu (xx5@cs.waikato.ac.nz) * @author Lin Dong (ld21@cs.waikato.ac.nz) * @version $Revision: 1.5 $  */public class SimpleMI   extends SingleClassifierEnhancer  implements OptionHandler, MultiInstanceCapabilitiesHandler {    /** for serialization */  static final long serialVersionUID = 9137795893666592662L;    /** arithmetic average */  public static final int TRANSFORMMETHOD_ARITHMETIC = 1;  /** geometric average */  public static final int TRANSFORMMETHOD_GEOMETRIC = 2;  /** using minimax combined features of a bag */  public static final int TRANSFORMMETHOD_MINIMAX = 3;  /** the transformation methods */  public static final Tag[] TAGS_TRANSFORMMETHOD = {    new Tag(TRANSFORMMETHOD_ARITHMETIC, "arithmetic average"),    new Tag(TRANSFORMMETHOD_GEOMETRIC, "geometric average"),    new Tag(TRANSFORMMETHOD_MINIMAX, "using minimax combined features of a bag")  };  /** the method used in transformation */  protected int m_TransformMethod = TRANSFORMMETHOD_ARITHMETIC;  /**   * Returns a string describing this filter   *   * @return a description of the filter suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "Reduces MI data into mono-instance data.";  }  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector result = new Vector();    result.addElement(new Option(          "\tThe method used in transformation:\n"          + "\t1.arithmatic average; 2.geometric centor;\n"          + "\t3.using minimax combined features of a bag (default: 1)\n\n"          + "\tMethod 3:\n"          + "\tDefine s to be the vector of the coordinate-wise maxima\n"          + "\tand minima of X, ie., \n"          + "\ts(X)=(minx1, ..., minxm, maxx1, ...,maxxm), transform\n"          + "\tthe exemplars into mono-instance which contains attributes\n"          + "\ts(X)",          "M", 1, "-M [1|2|3]"));    Enumeration enu = super.listOptions();    while (enu.hasMoreElements()) {      result.addElement(enu.nextElement());    }    return result.elements();  }  /**   * Parses a given list of options. <p/>   *   <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -M [1|2|3]   *  The method used in transformation:   *  1.arithmatic average; 2.geometric centor;   *  3.using minimax combined features of a bag (default: 1)   *    *  Method 3:   *  Define s to be the vector of the coordinate-wise maxima   *  and minima of X, ie.,    *  s(X)=(minx1, ..., minxm, maxx1, ...,maxxm), transform   *  the exemplars into mono-instance which contains attributes   *  s(X)</pre>   *    * <pre> -D   *  If set, classifier is run in debug mode and   *  may output additional info to the console</pre>   *    * <pre> -W   *  Full name of base classifier.   *  (default: weka.classifiers.rules.ZeroR)</pre>   *    * <pre>    * Options specific to classifier weka.classifiers.rules.ZeroR:   * </pre>   *    * <pre> -D   *  If set, classifier is run in debug mode and   *  may output additional info to the console</pre>   *    <!-- options-end -->   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {	    setDebug(Utils.getFlag('D', options));    String methodString = Utils.getOption('M', options);    if (methodString.length() != 0) {      setTransformMethod(          new SelectedTag(            Integer.parseInt(methodString), TAGS_TRANSFORMMETHOD));    } else {      setTransformMethod(          new SelectedTag(            TRANSFORMMETHOD_ARITHMETIC, TAGS_TRANSFORMMETHOD));    }	    super.setOptions(options);  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String[] getOptions() {    Vector        result;    String[]      options;    int           i;        result  = new Vector();    result.add("-M");    result.add("" + m_TransformMethod);    options = super.getOptions();    for (i = 0; i < options.length; i++)      result.add(options[i]);    return (String[]) result.toArray(new String[result.size()]);  }  /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String transformMethodTipText() {    return "The method used in transformation.";  }  /**   * Set the method used in transformation.    *   * @param newMethod the index of method to use.   */  public void setTransformMethod(SelectedTag newMethod) {    if (newMethod.getTags() == TAGS_TRANSFORMMETHOD)      m_TransformMethod = newMethod.getSelectedTag().getID();  }  /**   * Get the method used in transformation.   *   * @return the index of method used.   */  public SelectedTag getTransformMethod() {    return new SelectedTag(m_TransformMethod, TAGS_TRANSFORMMETHOD);  }  /**    * Implements MITransform (3 type of transformation) 1.arithmatic average;   * 2.geometric centor; 3.merge minima and maxima attribute value together   *   * @param train the multi-instance dataset (with relational attribute)     * @return the transformed dataset with each bag contain mono-instance   * (without relational attribute) so that any classifier not for MI dataset   * can be applied on it.   * @throws Exception if the transformation fails   */  public Instances transform(Instances train) throws Exception{    Attribute classAttribute = (Attribute) train.classAttribute().copy();    Attribute bagLabel = (Attribute) train.attribute(0);    double labelValue;    Instances newData = train.attribute(1).relation().stringFreeStructure();    //insert a bag label attribute at the begining    newData.insertAttributeAt(bagLabel, 0);    //insert a class attribute at the end    newData.insertAttributeAt(classAttribute, newData.numAttributes());    newData.setClassIndex(newData.numAttributes()-1);    Instances mini_data = newData.stringFreeStructure();    Instances max_data = newData.stringFreeStructure();    Instance newInst = new Instance (newData.numAttributes());     Instance mini_Inst = new Instance (mini_data.numAttributes());    Instance max_Inst = new Instance (max_data.numAttributes());    newInst.setDataset(newData);    mini_Inst.setDataset(mini_data);    max_Inst.setDataset(max_data);    double N= train.numInstances( );//number of bags       for(int i=0; i<N; i++){	      int attIdx =1;      Instance bag = train.instance(i); //retrieve the bag instance      labelValue= bag.value(0);      if (m_TransformMethod != TRANSFORMMETHOD_MINIMAX)	            newInst.setValue(0, labelValue);      else {        mini_Inst.setValue(0, labelValue);        max_Inst.setValue(0, labelValue);      }      Instances data = bag.relationalValue(1); // retrieve relational value for each bag       for(int j=0; j<data.numAttributes( ); j++){ 	        double value;        if(m_TransformMethod == TRANSFORMMETHOD_ARITHMETIC){          value = data.meanOrMode(j);           newInst.setValue(attIdx++, value);        }        else if (m_TransformMethod == TRANSFORMMETHOD_GEOMETRIC){          double[] minimax = minimax(data, j);          value = (minimax[0]+minimax[1])/2.0;          newInst.setValue(attIdx++, value);        }        else {  //m_TransformMethod == TRANSFORMMETHOD_MINIMAX          double[] minimax = minimax(data, j);          mini_Inst.setValue(attIdx, minimax[0]);//minima value          max_Inst.setValue(attIdx, minimax[1]);//maxima value          attIdx++;        }      }      if (m_TransformMethod == TRANSFORMMETHOD_MINIMAX) {        if (!bag.classIsMissing())          max_Inst.setClassValue(bag.classValue()); //set class value        mini_data.add(mini_Inst);         max_data.add(max_Inst);      }      else{        if (!bag.classIsMissing())          newInst.setClassValue(bag.classValue()); //set class value        newData.add(newInst);		      }      }    if (m_TransformMethod == TRANSFORMMETHOD_MINIMAX) {      mini_data.setClassIndex(-1);      mini_data.deleteAttributeAt(mini_data.numAttributes()-1); //delete class attribute for the minima data      max_data.deleteAttributeAt(0); // delete the bag label attribute for the maxima data      newData = Instances.mergeInstances(mini_data, max_data); //merge minima and maxima data      newData.setClassIndex(newData.numAttributes()-1);    }	    return newData;  }  /**   * Get the minimal and maximal value of a certain attribute in a certain data   *   * @param data the data   * @param attIndex the index of the attribute   * @return the double array containing in entry 0 for min and 1 for max.   */  public static double[] minimax(Instances data, int attIndex){    double[] rt = {Double.POSITIVE_INFINITY, Double.NEGATIVE_INFINITY};    for(int i=0; i<data.numInstances(); i++){      double val = data.instance(i).value(attIndex);      if(val > rt[1])        rt[1] = val;      if(val < rt[0])        rt[0] = val;    }    for(int j=0; j<2; j++)      if(Double.isInfinite(rt[j]))        rt[j] = Double.NaN;    return rt;  }  /**   * Returns default capabilities of the classifier.   *   * @return      the capabilities of this classifier   */  public Capabilities getCapabilities() {    Capabilities result = super.getCapabilities();    // attributes    result.enable(Capability.NOMINAL_ATTRIBUTES);    result.enable(Capability.RELATIONAL_ATTRIBUTES);    result.enable(Capability.MISSING_VALUES);    // class    result.disableAllClasses();    result.disableAllClassDependencies();    if (super.getCapabilities().handles(Capability.NOMINAL_CLASS))      result.enable(Capability.NOMINAL_CLASS);    if (super.getCapabilities().handles(Capability.BINARY_CLASS))      result.enable(Capability.BINARY_CLASS);    result.enable(Capability.MISSING_CLASS_VALUES);        // other    result.enable(Capability.ONLY_MULTIINSTANCE);        return result;  }  /**   * Returns the capabilities of this multi-instance classifier for the   * relational data.   *   * @return            the capabilities of this object   * @see               Capabilities   */  public Capabilities getMultiInstanceCapabilities() {    Capabilities result = super.getCapabilities();        // attributes    result.enable(Capability.NOMINAL_ATTRIBUTES);    result.enable(Capability.NUMERIC_ATTRIBUTES);    result.enable(Capability.DATE_ATTRIBUTES);    result.enable(Capability.MISSING_VALUES);    // class    result.disableAllClasses();    result.enable(Capability.NO_CLASS);        return result;  }  /**   * Builds the classifier   *   * @param train the training data to be used for generating the   * boosted classifier.   * @throws Exception if the classifier could not be built successfully   */  public void buildClassifier(Instances train) throws Exception {    // can classifier handle the data?    getCapabilities().testWithFail(train);    // remove instances with missing class    train = new Instances(train);    train.deleteWithMissingClass();        if (m_Classifier == null) {      throw new Exception("A base classifier has not been specified!");    }    if (getDebug())      System.out.println("Start training ...");    Instances data = transform(train);     data.deleteAttributeAt(0); // delete the bagID attribute    m_Classifier.buildClassifier(data);    if (getDebug())      System.out.println("Finish building model");  }		  /**   * Computes the distribution for a given exemplar   *   * @param newBag the exemplar for which distribution is computed   * @return the distribution   * @throws Exception if the distribution can't be computed successfully   */  public double[] distributionForInstance(Instance newBag)    throws Exception {    double [] distribution = new double[2];    Instances test = new Instances (newBag.dataset(), 0);	    test.add(newBag);	    test = transform(test);    test.deleteAttributeAt(0);    Instance newInst=test.firstInstance();    distribution = m_Classifier.distributionForInstance(newInst);    return distribution;	     }  /**   * Gets a string describing the classifier.   *   * @return a string describing the classifer built.   */  public String toString() {	    return "SimpleMI with base classifier: \n"+m_Classifier.toString();  }  /**   * Main method for testing this class.   *   * @param argv should contain the command line arguments to the   * scheme (see Evaluation)   */  public static void main(String[] argv) {    runClassifier(new SimpleMI(), argv);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -