⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 midd.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * MIDD.java * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand * */package weka.classifiers.mi;import weka.classifiers.Classifier;import weka.core.Capabilities;import weka.core.FastVector;import weka.core.Instance;import weka.core.Instances;import weka.core.MultiInstanceCapabilitiesHandler;import weka.core.Optimization;import weka.core.Option;import weka.core.OptionHandler;import weka.core.SelectedTag;import weka.core.Tag;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.Capabilities.Capability;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import weka.filters.Filter;import weka.filters.unsupervised.attribute.Normalize;import weka.filters.unsupervised.attribute.ReplaceMissingValues;import weka.filters.unsupervised.attribute.Standardize;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * Re-implement the Diverse Density algorithm, changes the testing procedure.<br/> * <br/> * Oded Maron (1998). Learning from ambiguity.<br/> * <br/> * O. Maron, T. Lozano-Perez (1998). A Framework for Multiple Instance Learning. Neural Information Processing Systems. 10. * <p/> <!-- globalinfo-end --> *  <!-- technical-bibtex-start --> * BibTeX: * <pre> * &#64;phdthesis{Maron1998, *    author = {Oded Maron}, *    school = {Massachusetts Institute of Technology}, *    title = {Learning from ambiguity}, *    year = {1998} * } *  * &#64;article{Maron1998, *    author = {O. Maron and T. Lozano-Perez}, *    journal = {Neural Information Processing Systems}, *    title = {A Framework for Multiple Instance Learning}, *    volume = {10}, *    year = {1998} * } * </pre> * <p/> <!-- technical-bibtex-end --> *  <!-- options-start --> * Valid options are: <p/> *  * <pre> -D *  Turn on debugging output.</pre> *  * <pre> -N &lt;num&gt; *  Whether to 0=normalize/1=standardize/2=neither. *  (default 1=standardize)</pre> *  <!-- options-end --> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Xin Xu (xx5@cs.waikato.ac.nz) * @version $Revision: 1.3 $  */public class MIDD   extends Classifier   implements OptionHandler, MultiInstanceCapabilitiesHandler,             TechnicalInformationHandler {  /** for serialization */  static final long serialVersionUID = 4263507733600536168L;    /** The index of the class attribute */  protected int m_ClassIndex;  protected double[] m_Par;  /** The number of the class labels */  protected int m_NumClasses;  /** Class labels for each bag */  protected int[] m_Classes;  /** MI data */   protected double[][][] m_Data;  /** All attribute names */  protected Instances m_Attributes;  /** The filter used to standardize/normalize all values. */  protected Filter m_Filter = null;  /** Whether to normalize/standardize/neither, default:standardize */  protected int m_filterType = FILTER_STANDARDIZE;  /** Normalize training data */  public static final int FILTER_NORMALIZE = 0;  /** Standardize training data */  public static final int FILTER_STANDARDIZE = 1;  /** No normalization/standardization */  public static final int FILTER_NONE = 2;  /** The filter to apply to the training data */  public static final Tag [] TAGS_FILTER = {    new Tag(FILTER_NORMALIZE, "Normalize training data"),    new Tag(FILTER_STANDARDIZE, "Standardize training data"),    new Tag(FILTER_NONE, "No normalization/standardization"),  };  /** The filter used to get rid of missing values. */  protected ReplaceMissingValues m_Missing = new ReplaceMissingValues();  /**   * Returns a string describing this filter   *   * @return a description of the filter suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return         "Re-implement the Diverse Density algorithm, changes the testing "      + "procedure.\n\n"      + getTechnicalInformation().toString();  }  /**   * Returns an instance of a TechnicalInformation object, containing    * detailed information about the technical background of this class,   * e.g., paper reference or book this class is based on.   *    * @return the technical information about this class   */  public TechnicalInformation getTechnicalInformation() {    TechnicalInformation 	result;    TechnicalInformation 	additional;        result = new TechnicalInformation(Type.PHDTHESIS);    result.setValue(Field.AUTHOR, "Oded Maron");    result.setValue(Field.YEAR, "1998");    result.setValue(Field.TITLE, "Learning from ambiguity");    result.setValue(Field.SCHOOL, "Massachusetts Institute of Technology");        additional = result.add(Type.ARTICLE);    additional.setValue(Field.AUTHOR, "O. Maron and T. Lozano-Perez");    additional.setValue(Field.YEAR, "1998");    additional.setValue(Field.TITLE, "A Framework for Multiple Instance Learning");    additional.setValue(Field.JOURNAL, "Neural Information Processing Systems");    additional.setValue(Field.VOLUME, "10");        return result;  }  /**   * Returns an enumeration describing the available options   *   * @return an enumeration of all the available options   */  public Enumeration listOptions() {    Vector result = new Vector();    result.addElement(new Option(          "\tTurn on debugging output.",          "D", 0, "-D"));    result.addElement(new Option(          "\tWhether to 0=normalize/1=standardize/2=neither.\n"          + "\t(default 1=standardize)",          "N", 1, "-N <num>"));    return result.elements();  }  /**   * Parses a given list of options. <p/>   *        <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -D   *  Turn on debugging output.</pre>   *    * <pre> -N &lt;num&gt;   *  Whether to 0=normalize/1=standardize/2=neither.   *  (default 1=standardize)</pre>   *    <!-- options-end -->   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    setDebug(Utils.getFlag('D', options));    String nString = Utils.getOption('N', options);    if (nString.length() != 0) {      setFilterType(new SelectedTag(Integer.parseInt(nString), TAGS_FILTER));    } else {      setFilterType(new SelectedTag(FILTER_STANDARDIZE, TAGS_FILTER));    }       }  /**   * Gets the current settings of the classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String[] getOptions() {    Vector        result;        result = new Vector();    if (getDebug())      result.add("-D");        result.add("-N");    result.add("" + m_filterType);    return (String[]) result.toArray(new String[result.size()]);  }  /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String filterTypeTipText() {    return "The filter type for transforming the training data.";  }  /**   * Gets how the training data will be transformed. Will be one of   * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE.   *   * @return the filtering mode   */  public SelectedTag getFilterType() {    return new SelectedTag(m_filterType, TAGS_FILTER);  }  /**   * Sets how the training data will be transformed. Should be one of   * FILTER_NORMALIZE, FILTER_STANDARDIZE, FILTER_NONE.   *   * @param newType the new filtering mode   */  public void setFilterType(SelectedTag newType) {    if (newType.getTags() == TAGS_FILTER) {      m_filterType = newType.getSelectedTag().getID();    }  }  private class OptEng     extends Optimization {    /**      * Evaluate objective function     * @param x the current values of variables     * @return the value of the objective function      */    protected double objectiveFunction(double[] x){      double nll = 0; // -LogLikelihood      for(int i=0; i<m_Classes.length; i++){ // ith bag        int nI = m_Data[i][0].length; // numInstances in ith bag        double bag = 0.0;  // NLL of pos bag        for(int j=0; j<nI; j++){          double ins=0.0;          for(int k=0; k<m_Data[i].length; k++)            ins += (m_Data[i][k][j]-x[k*2])*(m_Data[i][k][j]-x[k*2])*              x[k*2+1]*x[k*2+1];          ins = Math.exp(-ins);          ins = 1.0-ins;          if(m_Classes[i] == 1)            bag += Math.log(ins);          else{            if(ins<=m_Zero) ins=m_Zero;            nll -= Math.log(ins);          }           }		        if(m_Classes[i] == 1){          bag = 1.0 - Math.exp(bag);          if(bag<=m_Zero) bag=m_Zero;          nll -= Math.log(bag);        }

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -