📄 milr.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * MILR.java * Copyright (C) 2005 University of Waikato, Hamilton, New Zealand * */package weka.classifiers.mi;import weka.classifiers.Classifier;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.MultiInstanceCapabilitiesHandler;import weka.core.Optimization;import weka.core.Option;import weka.core.OptionHandler;import weka.core.SelectedTag;import weka.core.Tag;import weka.core.Utils;import weka.core.Capabilities.Capability;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * Uses either standard or collective multi-instance assumption, but within linear regression. For the collective assumption, it offers arithmetic or geometric mean for the posteriors. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -D * Turn on debugging output.</pre> * * <pre> -R <ridge> * Set the ridge in the log-likelihood.</pre> * * <pre> -A [0|1|2] * Defines the type of algorithm: * 0. standard MI assumption * 1. collective MI assumption, arithmetic mean for posteriors * 2. collective MI assumption, geometric mean for posteriors</pre> * <!-- options-end --> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Xin Xu (xx5@cs.waikato.ac.nz) * @version $Revision: 1.3 $ */public class MILR extends Classifier implements OptionHandler, MultiInstanceCapabilitiesHandler { /** for serialization */ static final long serialVersionUID = 1996101190172373826L; protected double[] m_Par; /** The number of the class labels */ protected int m_NumClasses; /** The ridge parameter. */ protected double m_Ridge = 1e-6; /** Class labels for each bag */ protected int[] m_Classes; /** MI data */ protected double[][][] m_Data; /** All attribute names */ protected Instances m_Attributes; protected double[] xMean = null, xSD = null; /** the type of processing */ protected int m_AlgorithmType = ALGORITHMTYPE_DEFAULT; /** standard MI assumption */ public static final int ALGORITHMTYPE_DEFAULT = 0; /** collective MI assumption, arithmetic mean for posteriors */ public static final int ALGORITHMTYPE_ARITHMETIC = 1; /** collective MI assumption, geometric mean for posteriors */ public static final int ALGORITHMTYPE_GEOMETRIC = 2; /** the types of algorithms */ public static final Tag [] TAGS_ALGORITHMTYPE = { new Tag(ALGORITHMTYPE_DEFAULT, "standard MI assumption"), new Tag(ALGORITHMTYPE_ARITHMETIC, "collective MI assumption, arithmetic mean for posteriors"), new Tag(ALGORITHMTYPE_GEOMETRIC, "collective MI assumption, geometric mean for posteriors"), }; /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Uses either standard or collective multi-instance assumption, but " + "within linear regression. For the collective assumption, it offers " + "arithmetic or geometric mean for the posteriors."; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector result = new Vector(); result.addElement(new Option( "\tTurn on debugging output.", "D", 0, "-D")); result.addElement(new Option( "\tSet the ridge in the log-likelihood.", "R", 1, "-R <ridge>")); result.addElement(new Option( "\tDefines the type of algorithm:\n" + "\t 0. standard MI assumption\n" + "\t 1. collective MI assumption, arithmetic mean for posteriors\n" + "\t 2. collective MI assumption, geometric mean for posteriors", "A", 1, "-A [0|1|2]")); return result.elements(); } /** * Parses a given list of options. * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String tmpStr; setDebug(Utils.getFlag('D', options)); tmpStr = Utils.getOption('R', options); if (tmpStr.length() != 0) setRidge(Double.parseDouble(tmpStr)); else setRidge(1.0e-6); tmpStr = Utils.getOption('A', options); if (tmpStr.length() != 0) { setAlgorithmType(new SelectedTag(Integer.parseInt(tmpStr), TAGS_ALGORITHMTYPE)); } else { setAlgorithmType(new SelectedTag(ALGORITHMTYPE_DEFAULT, TAGS_ALGORITHMTYPE)); } } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { Vector result; result = new Vector(); if (getDebug()) result.add("-D"); result.add("-R"); result.add("" + getRidge()); result.add("-A"); result.add("" + m_AlgorithmType); return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String ridgeTipText() { return "The ridge in the log-likelihood."; } /** * Sets the ridge in the log-likelihood. * * @param ridge the ridge */ public void setRidge(double ridge) { m_Ridge = ridge; } /** * Gets the ridge in the log-likelihood. * * @return the ridge */ public double getRidge() { return m_Ridge; } /** * Returns the tip text for this property * * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String algorithmTypeTipText() { return "The mean type for the posteriors."; } /** * Gets the type of algorithm. * * @return the algorithm type */ public SelectedTag getAlgorithmType() { return new SelectedTag(m_AlgorithmType, TAGS_ALGORITHMTYPE); } /** * Sets the algorithm type. * * @param newType the new algorithm type */ public void setAlgorithmType(SelectedTag newType) { if (newType.getTags() == TAGS_ALGORITHMTYPE) { m_AlgorithmType = newType.getSelectedTag().getID(); } } private class OptEng extends Optimization { /** the type to use * @see MILR#TAGS_ALGORITHMTYPE */ private int m_Type; /** * initializes the object * * @param type the type top use * @see MILR#TAGS_ALGORITHMTYPE */ public OptEng(int type) { super(); m_Type = type; } /** * Evaluate objective function * @param x the current values of variables * @return the value of the objective function */ protected double objectiveFunction(double[] x){ double nll = 0; // -LogLikelihood switch (m_Type) { case ALGORITHMTYPE_DEFAULT: for(int i=0; i<m_Classes.length; i++){ // ith bag int nI = m_Data[i][0].length; // numInstances in ith bag double bag = 0.0, // NLL of each bag prod = 0.0; // Log-prob. for(int j=0; j<nI; j++){ double exp=0.0; for(int k=m_Data[i].length-1; k>=0; k--) exp += m_Data[i][k][j]*x[k+1]; exp += x[0]; exp = Math.exp(exp); if(m_Classes[i]==1) prod -= Math.log(1.0+exp); else bag += Math.log(1.0+exp); } if(m_Classes[i]==1) bag = -Math.log(1.0-Math.exp(prod)); nll += bag; } break; case ALGORITHMTYPE_ARITHMETIC: for(int i=0; i<m_Classes.length; i++){ // ith bag int nI = m_Data[i][0].length; // numInstances in ith bag double bag = 0; // NLL of each bag for(int j=0; j<nI; j++){ double exp=0.0; for(int k=m_Data[i].length-1; k>=0; k--) exp += m_Data[i][k][j]*x[k+1]; exp += x[0]; exp = Math.exp(exp); if(m_Classes[i] == 1) bag += 1.0-1.0/(1.0+exp); // To avoid exp infinite else bag += 1.0/(1.0+exp); } bag /= (double)nI; nll -= Math.log(bag); } break; case ALGORITHMTYPE_GEOMETRIC: for(int i=0; i<m_Classes.length; i++){ // ith bag int nI = m_Data[i][0].length; // numInstances in ith bag double bag = 0; // Log-prob. for(int j=0; j<nI; j++){ double exp=0.0; for(int k=m_Data[i].length-1; k>=0; k--) exp += m_Data[i][k][j]*x[k+1]; exp += x[0]; if(m_Classes[i]==1) bag -= exp/(double)nI; else bag += exp/(double)nI; } nll += Math.log(1.0+Math.exp(bag)); } break; } // ridge: note that intercepts NOT included for(int r=1; r<x.length; r++) nll += m_Ridge*x[r]*x[r]; return nll; } /** * Evaluate Jacobian vector * @param x the current values of variables * @return the gradient vector */ protected double[] evaluateGradient(double[] x){ double[] grad = new double[x.length]; switch (m_Type) { case ALGORITHMTYPE_DEFAULT: for(int i=0; i<m_Classes.length; i++){ // ith bag int nI = m_Data[i][0].length; // numInstances in ith bag double denom = 0.0; // denominator, in log-scale double[] bag = new double[grad.length]; //gradient update with ith bag for(int j=0; j<nI; j++){ // Compute exp(b0+b1*Xi1j+...)/[1+exp(b0+b1*Xi1j+...)] double exp=0.0; for(int k=m_Data[i].length-1; k>=0; k--) exp += m_Data[i][k][j]*x[k+1]; exp += x[0]; exp = Math.exp(exp)/(1.0+Math.exp(exp)); if(m_Classes[i]==1) // Bug fix: it used to be denom += Math.log(1.0+exp); // Fixed 21 Jan 2005 (Eibe) denom -= Math.log(1.0-exp); // Instance-wise update of dNLL/dBk for(int p=0; p<x.length; p++){ // pth variable double m = 1.0; if(p>0) m=m_Data[i][p-1][j]; bag[p] += m*exp; } } denom = Math.exp(denom); // Bag-wise update of dNLL/dBk for(int q=0; q<grad.length; q++){ if(m_Classes[i]==1) grad[q] -= bag[q]/(denom-1.0); else grad[q] += bag[q]; } } break; case ALGORITHMTYPE_ARITHMETIC: for(int i=0; i<m_Classes.length; i++){ // ith bag
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -