⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 dagging.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
   *  Random number seed.   *  (default 1)</pre>   *    * <pre> -D   *  If set, classifier is run in debug mode and   *  may output additional info to the console</pre>   *    * <pre> -W   *  Full name of base classifier.   *  (default: weka.classifiers.functions.SMO)</pre>   *    * <pre>    * Options specific to classifier weka.classifiers.functions.SMO:   * </pre>   *    * <pre> -D   *  If set, classifier is run in debug mode and   *  may output additional info to the console</pre>   *    * <pre> -no-checks   *  Turns off all checks - use with caution!   *  Turning them off assumes that data is purely numeric, doesn't   *  contain any missing values, and has a nominal class. Turning them   *  off also means that no header information will be stored if the   *  machine is linear. Finally, it also assumes that no instance has   *  a weight equal to 0.   *  (default: checks on)</pre>   *    * <pre> -C &lt;double&gt;   *  The complexity constant C. (default 1)</pre>   *    * <pre> -N   *  Whether to 0=normalize/1=standardize/2=neither. (default 0=normalize)</pre>   *    * <pre> -L &lt;double&gt;   *  The tolerance parameter. (default 1.0e-3)</pre>   *    * <pre> -P &lt;double&gt;   *  The epsilon for round-off error. (default 1.0e-12)</pre>   *    * <pre> -M   *  Fit logistic models to SVM outputs. </pre>   *    * <pre> -V &lt;double&gt;   *  The number of folds for the internal   *  cross-validation. (default -1, use training data)</pre>   *    * <pre> -W &lt;double&gt;   *  The random number seed. (default 1)</pre>   *    * <pre> -K &lt;classname and parameters&gt;   *  The Kernel to use.   *  (default: weka.classifiers.functions.supportVector.PolyKernel)</pre>   *    * <pre>    * Options specific to kernel weka.classifiers.functions.supportVector.PolyKernel:   * </pre>   *    * <pre> -D   *  Enables debugging output (if available) to be printed.   *  (default: off)</pre>   *    * <pre> -no-checks   *  Turns off all checks - use with caution!   *  (default: checks on)</pre>   *    * <pre> -C &lt;num&gt;   *  The size of the cache (a prime number).   *  (default: 250007)</pre>   *    * <pre> -E &lt;num&gt;   *  The Exponent to use.   *  (default: 1.0)</pre>   *    * <pre> -L   *  Use lower-order terms.   *  (default: no)</pre>   *    <!-- options-end -->   *   * Options after -- are passed to the designated classifier.<p>   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    String        tmpStr;    tmpStr = Utils.getOption('F', options);    if (tmpStr.length() != 0)      setNumFolds(Integer.parseInt(tmpStr));    else      setNumFolds(10);        setVerbose(Utils.getFlag("verbose", options));        super.setOptions(options);  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String[] getOptions() {    Vector        result;    String[]      options;    int           i;        result  = new Vector();    result.add("-F");    result.add("" + getNumFolds());        if (getVerbose())      result.add("-verbose");        options = super.getOptions();    for (i = 0; i < options.length; i++)      result.add(options[i]);        return (String[]) result.toArray(new String[result.size()]);  }  /**   * Gets the number of folds to use for splitting the training set.   *   * @return the number of folds   */  public int getNumFolds() {    return m_NumFolds;  }    /**   * Sets the number of folds to use for splitting the training set.   *   * @param value     the new number of folds   */  public void setNumFolds(int value) {    if (value > 0)      m_NumFolds = value;    else      System.out.println(          "At least 1 fold is necessary (provided: " + value + ")!");  }  /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   *         displaying in the explorer/experimenter gui   */  public String numFoldsTipText() {    return "The number of folds to use for splitting the training set into smaller chunks for the base classifier.";  }    /**   * Set the verbose state.   *   * @param value the verbose state   */  public void setVerbose(boolean value) {    m_Verbose = value;  }    /**   * Gets the verbose state   *   * @return the verbose state   */  public boolean getVerbose() {    return m_Verbose;  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String verboseTipText() {    return "Whether to ouput some additional information during building.";  }  /**   * Bagging method.   *   * @param data the training data to be used for generating the   * bagged classifier.   * @throws Exception if the classifier could not be built successfully   */  public void buildClassifier(Instances data) throws Exception {    Classifier[]        base;    int                 i;    int                 n;    int                 fromIndex;    int                 toIndex;    Instances           train;    double              chunkSize;        // can classifier handle the data?    getCapabilities().testWithFail(data);    // remove instances with missing class    data = new Instances(data);    data.deleteWithMissingClass();        m_Vote    = new Vote();    base      = new Classifier[getNumFolds()];    chunkSize = (double) data.numInstances() / (double) getNumFolds();        // stratify data    if (getNumFolds() > 1)      data.stratify(getNumFolds());    // generate <folds> classifiers    for (i = 0; i < getNumFolds(); i++) {      base[i] = makeCopy(getClassifier());      // generate training data      if (getNumFolds() > 1) {        // some progress information        if (getVerbose())          System.out.print(".");                train     = new Instances(data, 0);        fromIndex = (int) ((double) i * chunkSize);        toIndex   = (int) (((double) i + 1) * chunkSize) - 1;        if (i == getNumFolds() - 1)          toIndex = data.numInstances() - 1;        for (n = fromIndex; n < toIndex; n++)          train.add(data.instance(n));      }      else {        train = data;      }      // train classifier      base[i].buildClassifier(train);    }        // init vote    m_Vote.setClassifiers(base);        if (getVerbose())      System.out.println();  }  /**   * Calculates the class membership probabilities for the given test   * instance.   *   * @param instance the instance to be classified   * @return preedicted class probability distribution   * @throws Exception if distribution can't be computed successfully    */  public double[] distributionForInstance(Instance instance) throws Exception {    return m_Vote.distributionForInstance(instance);  }  /**   * Returns description of the classifier.   *   * @return description of the classifier as a string   */  public String toString() {    if (m_Vote == null)      return this.getClass().getName().replaceAll(".*\\.", "")              + ": No model built yet.";    else      return m_Vote.toString();  }  /**   * Main method for testing this class.   *   * @param args the options   */  public static void main(String[] args) {    runClassifier(new Dagging(), args);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -