⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 multischeme.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    MultiScheme.java *    Copyright (C) 1999 Len Trigg * */package weka.classifiers.meta;import weka.classifiers.Classifier;import weka.classifiers.Evaluation;import weka.classifiers.RandomizableMultipleClassifiersCombiner;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.Utils;import java.util.Enumeration;import java.util.Random;import java.util.Vector;/** <!-- globalinfo-start --> * Class for selecting a classifier from among several using cross validation on the training data or the performance on the training data. Performance is measured based on percent correct (classification) or mean-squared error (regression). * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -X &lt;number of folds&gt; *  Use cross validation for model selection using the *  given number of folds. (default 0, is to *  use training error)</pre> *  * <pre> -S &lt;num&gt; *  Random number seed. *  (default 1)</pre> *  * <pre> -B &lt;classifier specification&gt; *  Full class name of classifier to include, followed *  by scheme options. May be specified multiple times. *  (default: "weka.classifiers.rules.ZeroR")</pre> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  <!-- options-end --> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.22 $ */public class MultiScheme   extends RandomizableMultipleClassifiersCombiner {  /** for serialization */  static final long serialVersionUID = 5710744346128957520L;    /** The classifier that had the best performance on training data. */  protected Classifier m_Classifier;   /** The index into the vector for the selected scheme */  protected int m_ClassifierIndex;  /**   * Number of folds to use for cross validation (0 means use training   * error for selection)   */  protected int m_NumXValFolds;      /**   * Returns a string describing classifier   * @return a description suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return  "Class for selecting a classifier from among several using cross "      + "validation on the training data or the performance on the "      + "training data. Performance is measured based on percent correct "      + "(classification) or mean-squared error (regression).";  }  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(1);    newVector.addElement(new Option(	      "\tUse cross validation for model selection using the\n"	      + "\tgiven number of folds. (default 0, is to\n"	      + "\tuse training error)",	      "X", 1, "-X <number of folds>"));    Enumeration enu = super.listOptions();    while (enu.hasMoreElements()) {      newVector.addElement(enu.nextElement());    }    return newVector.elements();  }  /**   * Parses a given list of options. <p/>   *   <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -X &lt;number of folds&gt;   *  Use cross validation for model selection using the   *  given number of folds. (default 0, is to   *  use training error)</pre>   *    * <pre> -S &lt;num&gt;   *  Random number seed.   *  (default 1)</pre>   *    * <pre> -B &lt;classifier specification&gt;   *  Full class name of classifier to include, followed   *  by scheme options. May be specified multiple times.   *  (default: "weka.classifiers.rules.ZeroR")</pre>   *    * <pre> -D   *  If set, classifier is run in debug mode and   *  may output additional info to the console</pre>   *    <!-- options-end -->   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {        String numFoldsString = Utils.getOption('X', options);    if (numFoldsString.length() != 0) {      setNumFolds(Integer.parseInt(numFoldsString));    } else {      setNumFolds(0);    }    super.setOptions(options);  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] superOptions = super.getOptions();    String [] options = new String [superOptions.length + 2];    int current = 0;    options[current++] = "-X"; options[current++] = "" + getNumFolds();    System.arraycopy(superOptions, 0, options, current, 		     superOptions.length);    return options;  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String classifiersTipText() {    return "The classifiers to be chosen from.";  }  /**   * Sets the list of possible classifers to choose from.   *   * @param classifiers an array of classifiers with all options set.   */  public void setClassifiers(Classifier [] classifiers) {    m_Classifiers = classifiers;  }  /**   * Gets the list of possible classifers to choose from.   *   * @return the array of Classifiers   */  public Classifier [] getClassifiers() {    return m_Classifiers;  }    /**   * Gets a single classifier from the set of available classifiers.   *   * @param index the index of the classifier wanted   * @return the Classifier   */  public Classifier getClassifier(int index) {    return m_Classifiers[index];  }    /**   * Gets the classifier specification string, which contains the class name of   * the classifier and any options to the classifier   *   * @param index the index of the classifier string to retrieve, starting from   * 0.   * @return the classifier string, or the empty string if no classifier   * has been assigned (or the index given is out of range).   */  protected String getClassifierSpec(int index) {        if (m_Classifiers.length < index) {      return "";    }    Classifier c = getClassifier(index);    if (c instanceof OptionHandler) {      return c.getClass().getName() + " "	+ Utils.joinOptions(((OptionHandler)c).getOptions());    }    return c.getClass().getName();  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String seedTipText() {    return "The seed used for randomizing the data " +      "for cross-validation.";  }  /**   * Sets the seed for random number generation.   *   * @param seed the random number seed   */  public void setSeed(int seed) {        m_Seed = seed;;  }  /**   * Gets the random number seed.   *    * @return the random number seed   */  public int getSeed() {    return m_Seed;  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String numFoldsTipText() {    return "The number of folds used for cross-validation (if 0, " +      "performance on training data will be used).";  }  /**    * Gets the number of folds for cross-validation. A number less   * than 2 specifies using training error rather than cross-validation.   *   * @return the number of folds for cross-validation   */  public int getNumFolds() {    return m_NumXValFolds;  }  /**   * Sets the number of folds for cross-validation. A number less   * than 2 specifies using training error rather than cross-validation.   *   * @param numFolds the number of folds for cross-validation   */  public void setNumFolds(int numFolds) {        m_NumXValFolds = numFolds;  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String debugTipText() {    return "Whether debug information is output to console.";  }  /**   * Set debugging mode   *   * @param debug true if debug output should be printed   */  public void setDebug(boolean debug) {    m_Debug = debug;  }  /**   * Get whether debugging is turned on   *   * @return true if debugging output is on   */  public boolean getDebug() {    return m_Debug;  }  /**   * Buildclassifier selects a classifier from the set of classifiers   * by minimising error on the training data.   *   * @param data the training data to be used for generating the   * boosted classifier.   * @throws Exception if the classifier could not be built successfully   */  public void buildClassifier(Instances data) throws Exception {    if (m_Classifiers.length == 0) {      throw new Exception("No base classifiers have been set!");    }    // can classifier handle the data?    getCapabilities().testWithFail(data);    // remove instances with missing class    Instances newData = new Instances(data);    newData.deleteWithMissingClass();        Random random = new Random(m_Seed);    newData.randomize(random);    if (newData.classAttribute().isNominal() && (m_NumXValFolds > 1)) {      newData.stratify(m_NumXValFolds);    }    Instances train = newData;               // train on all data by default    Instances test = newData;               // test on training data by default    Classifier bestClassifier = null;    int bestIndex = -1;    double bestPerformance = Double.NaN;    int numClassifiers = m_Classifiers.length;    for (int i = 0; i < numClassifiers; i++) {      Classifier currentClassifier = getClassifier(i);      Evaluation evaluation;      if (m_NumXValFolds > 1) {	evaluation = new Evaluation(newData);	for (int j = 0; j < m_NumXValFolds; j++) {          // We want to randomize the data the same way for every           // learning scheme.	  train = newData.trainCV(m_NumXValFolds, j, new Random (1));	  test = newData.testCV(m_NumXValFolds, j);	  currentClassifier.buildClassifier(train);	  evaluation.setPriors(train);	  evaluation.evaluateModel(currentClassifier, test);	}      } else {	currentClassifier.buildClassifier(train);	evaluation = new Evaluation(train);	evaluation.evaluateModel(currentClassifier, test);      }      double error = evaluation.errorRate();      if (m_Debug) {	System.err.println("Error rate: " + Utils.doubleToString(error, 6, 4)			   + " for classifier "			   + currentClassifier.getClass().getName());      }      if ((i == 0) || (error < bestPerformance)) {	bestClassifier = currentClassifier;	bestPerformance = error;	bestIndex = i;      }    }    m_ClassifierIndex = bestIndex;    if (m_NumXValFolds > 1) {      bestClassifier.buildClassifier(newData);    }    m_Classifier = bestClassifier;  }  /**   * Returns class probabilities.   *   * @param instance the instance to be classified   * @return the distribution for the instance   * @throws Exception if instance could not be classified   * successfully   */  public double[] distributionForInstance(Instance instance) throws Exception {    return m_Classifier.distributionForInstance(instance);  }  /**   * Output a representation of this classifier   * @return a string representation of the classifier   */  public String toString() {    if (m_Classifier == null) {      return "MultiScheme: No model built yet.";    }    String result = "MultiScheme selection using";    if (m_NumXValFolds > 1) {      result += " cross validation error";    } else {      result += " error on training data";    }    result += " from the following:\n";    for (int i = 0; i < m_Classifiers.length; i++) {      result += '\t' + getClassifierSpec(i) + '\n';    }    result += "Selected scheme: "      + getClassifierSpec(m_ClassifierIndex)      + "\n\n"      + m_Classifier.toString();    return result;  }  /**   * Main method for testing this class.   *   * @param argv should contain the following arguments:   * -t training file [-T test file] [-c class index]   */  public static void main(String [] argv) {    runClassifier(new MultiScheme(), argv);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -