📄 stacking.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * Stacking.java * Copyright (C) 1999 Eibe Frank * */package weka.classifiers.meta;import weka.classifiers.Classifier;import weka.classifiers.RandomizableMultipleClassifiersCombiner;import weka.classifiers.rules.ZeroR;import weka.core.Attribute;import weka.core.Capabilities;import weka.core.FastVector;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import java.util.Enumeration;import java.util.Random;import java.util.Vector;/** <!-- globalinfo-start --> * Combines several classifiers using the stacking method. Can do classification or regression.<br/> * <br/> * For more information, see<br/> * <br/> * David H. Wolpert (1992). Stacked generalization. Neural Networks. 5:241-259. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @article{Wolpert1992, * author = {David H. Wolpert}, * journal = {Neural Networks}, * pages = {241-259}, * publisher = {Pergamon Press}, * title = {Stacked generalization}, * volume = {5}, * year = {1992} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -M <scheme specification> * Full name of meta classifier, followed by options. * (default: "weka.classifiers.rules.Zero")</pre> * * <pre> -X <number of folds> * Sets the number of cross-validation folds.</pre> * * <pre> -S <num> * Random number seed. * (default 1)</pre> * * <pre> -B <classifier specification> * Full class name of classifier to include, followed * by scheme options. May be specified multiple times. * (default: "weka.classifiers.rules.ZeroR")</pre> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * <!-- options-end --> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.30 $ */public class Stacking extends RandomizableMultipleClassifiersCombiner implements TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 5134738557155845452L; /** The meta classifier */ protected Classifier m_MetaClassifier = new ZeroR(); /** Format for meta data */ protected Instances m_MetaFormat = null; /** Format for base data */ protected Instances m_BaseFormat = null; /** Set the number of folds for the cross-validation */ protected int m_NumFolds = 10; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Combines several classifiers using the stacking method. " + "Can do classification or regression.\n\n" + "For more information, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.ARTICLE); result.setValue(Field.AUTHOR, "David H. Wolpert"); result.setValue(Field.YEAR, "1992"); result.setValue(Field.TITLE, "Stacked generalization"); result.setValue(Field.JOURNAL, "Neural Networks"); result.setValue(Field.VOLUME, "5"); result.setValue(Field.PAGES, "241-259"); result.setValue(Field.PUBLISHER, "Pergamon Press"); return result; } /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(2); newVector.addElement(new Option( metaOption(), "M", 0, "-M <scheme specification>")); newVector.addElement(new Option( "\tSets the number of cross-validation folds.", "X", 1, "-X <number of folds>")); Enumeration enu = super.listOptions(); while (enu.hasMoreElements()) { newVector.addElement(enu.nextElement()); } return newVector.elements(); } /** * String describing option for setting meta classifier * * @return the string describing the option */ protected String metaOption() { return "\tFull name of meta classifier, followed by options.\n" + "\t(default: \"weka.classifiers.rules.Zero\")"; } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -M <scheme specification> * Full name of meta classifier, followed by options. * (default: "weka.classifiers.rules.Zero")</pre> * * <pre> -X <number of folds> * Sets the number of cross-validation folds.</pre> * * <pre> -S <num> * Random number seed. * (default 1)</pre> * * <pre> -B <classifier specification> * Full class name of classifier to include, followed * by scheme options. May be specified multiple times. * (default: "weka.classifiers.rules.ZeroR")</pre> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { String numFoldsString = Utils.getOption('X', options); if (numFoldsString.length() != 0) { setNumFolds(Integer.parseInt(numFoldsString)); } else { setNumFolds(10); } processMetaOptions(options); super.setOptions(options); } /** * Process options setting meta classifier. * * @param options the options to parse * @throws Exception if the parsing fails */ protected void processMetaOptions(String[] options) throws Exception { String classifierString = Utils.getOption('M', options); String [] classifierSpec = Utils.splitOptions(classifierString); String classifierName; if (classifierSpec.length == 0) { classifierName = "weka.classifiers.rules.ZeroR"; } else { classifierName = classifierSpec[0]; classifierSpec[0] = ""; } setMetaClassifier(Classifier.forName(classifierName, classifierSpec)); } /** * Gets the current settings of the Classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { String [] superOptions = super.getOptions(); String [] options = new String [superOptions.length + 4]; int current = 0; options[current++] = "-X"; options[current++] = "" + getNumFolds(); options[current++] = "-M"; options[current++] = getMetaClassifier().getClass().getName() + " " + Utils.joinOptions(((OptionHandler)getMetaClassifier()).getOptions());
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -