⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 costsensitiveclassifier.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    CostSensitiveClassifier.java *    Copyright (C) 2002 University of Waikato * */package weka.classifiers.meta;import weka.classifiers.Classifier;import weka.classifiers.CostMatrix;import weka.classifiers.RandomizableSingleClassifierEnhancer;import weka.core.Capabilities;import weka.core.Drawable;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.SelectedTag;import weka.core.Tag;import weka.core.Utils;import weka.core.WeightedInstancesHandler;import weka.core.Capabilities.Capability;import java.io.BufferedReader;import java.io.File;import java.io.FileReader;import java.io.StringReader;import java.io.StringWriter;import java.util.Enumeration;import java.util.Random;import java.util.Vector;/** <!-- globalinfo-start --> * A metaclassifier that makes its base classifier cost-sensitive. Two methods can be used to introduce cost-sensitivity: reweighting training instances according to the total cost assigned to each class; or predicting the class with minimum expected misclassification cost (rather than the most likely class). Performance can often be improved by using a Bagged classifier to improve the probability estimates of the base classifier. * <p/> <!-- globalinfo-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -M *  Minimize expected misclassification cost. Default is to *  reweight training instances according to costs per class</pre> *  * <pre> -C &lt;cost file name&gt; *  File name of a cost matrix to use. If this is not supplied, *  a cost matrix will be loaded on demand. The name of the *  on-demand file is the relation name of the training data *  plus ".cost", and the path to the on-demand file is *  specified with the -N option.</pre> *  * <pre> -N &lt;directory&gt; *  Name of a directory to search for cost files when loading *  costs on demand (default current directory).</pre> *  * <pre> -cost-matrix &lt;matrix&gt; *  The cost matrix in Matlab single line format.</pre> *  * <pre> -S &lt;num&gt; *  Random number seed. *  (default 1)</pre> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  * <pre> -W *  Full name of base classifier. *  (default: weka.classifiers.rules.ZeroR)</pre> *  * <pre>  * Options specific to classifier weka.classifiers.rules.ZeroR: * </pre> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  <!-- options-end --> * * Options after -- are passed to the designated classifier.<p> * * @author Len Trigg (len@reeltwo.com) * @version $Revision: 1.26 $ */public class CostSensitiveClassifier   extends RandomizableSingleClassifierEnhancer  implements OptionHandler, Drawable {  /** for serialization */  static final long serialVersionUID = -720658209263002404L;    /** load cost matrix on demand */  public static final int MATRIX_ON_DEMAND = 1;  /** use explicit cost matrix */  public static final int MATRIX_SUPPLIED = 2;  /** Specify possible sources of the cost matrix */  public static final Tag [] TAGS_MATRIX_SOURCE = {    new Tag(MATRIX_ON_DEMAND, "Load cost matrix on demand"),    new Tag(MATRIX_SUPPLIED, "Use explicit cost matrix")  };  /** Indicates the current cost matrix source */  protected int m_MatrixSource = MATRIX_ON_DEMAND;  /**    * The directory used when loading cost files on demand, null indicates   * current directory    */  protected File m_OnDemandDirectory = new File(System.getProperty("user.dir"));  /** The name of the cost file, for command line options */  protected String m_CostFile;  /** The cost matrix */  protected CostMatrix m_CostMatrix = new CostMatrix(1);  /**    * True if the costs should be used by selecting the minimum expected   * cost (false means weight training data by the costs)   */  protected boolean m_MinimizeExpectedCost;    /**   * String describing default classifier.   *    * @return the default classifier classname    */  protected String defaultClassifierString() {        return "weka.classifiers.rules.ZeroR";  }  /**   * Default constructor.   */  public CostSensitiveClassifier() {    m_Classifier = new weka.classifiers.rules.ZeroR();  }  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(5);    newVector.addElement(new Option(	      "\tMinimize expected misclassification cost. Default is to\n"	      +"\treweight training instances according to costs per class",	      "M", 0, "-M"));    newVector.addElement(new Option(	      "\tFile name of a cost matrix to use. If this is not supplied,\n"              +"\ta cost matrix will be loaded on demand. The name of the\n"              +"\ton-demand file is the relation name of the training data\n"              +"\tplus \".cost\", and the path to the on-demand file is\n"              +"\tspecified with the -N option.",	      "C", 1, "-C <cost file name>"));    newVector.addElement(new Option(              "\tName of a directory to search for cost files when loading\n"              +"\tcosts on demand (default current directory).",              "N", 1, "-N <directory>"));    newVector.addElement(new Option(              "\tThe cost matrix in Matlab single line format.",              "cost-matrix", 1, "-cost-matrix <matrix>"));    Enumeration enu = super.listOptions();    while (enu.hasMoreElements()) {      newVector.addElement(enu.nextElement());    }    return newVector.elements();  }  /**   * Parses a given list of options. <p/>   *   <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -M   *  Minimize expected misclassification cost. Default is to   *  reweight training instances according to costs per class</pre>   *    * <pre> -C &lt;cost file name&gt;   *  File name of a cost matrix to use. If this is not supplied,   *  a cost matrix will be loaded on demand. The name of the   *  on-demand file is the relation name of the training data   *  plus ".cost", and the path to the on-demand file is   *  specified with the -N option.</pre>   *    * <pre> -N &lt;directory&gt;   *  Name of a directory to search for cost files when loading   *  costs on demand (default current directory).</pre>   *    * <pre> -cost-matrix &lt;matrix&gt;   *  The cost matrix in Matlab single line format.</pre>   *    * <pre> -S &lt;num&gt;   *  Random number seed.   *  (default 1)</pre>   *    * <pre> -D   *  If set, classifier is run in debug mode and   *  may output additional info to the console</pre>   *    * <pre> -W   *  Full name of base classifier.   *  (default: weka.classifiers.rules.ZeroR)</pre>   *    * <pre>    * Options specific to classifier weka.classifiers.rules.ZeroR:   * </pre>   *    * <pre> -D   *  If set, classifier is run in debug mode and   *  may output additional info to the console</pre>   *    <!-- options-end -->   *   * Options after -- are passed to the designated classifier.<p>   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    setMinimizeExpectedCost(Utils.getFlag('M', options));    String costFile = Utils.getOption('C', options);    if (costFile.length() != 0) {      try {	setCostMatrix(new CostMatrix(new BufferedReader(				     new FileReader(costFile))));      } catch (Exception ex) {	// now flag as possible old format cost matrix. Delay cost matrix	// loading until buildClassifer is called	setCostMatrix(null);      }      setCostMatrixSource(new SelectedTag(MATRIX_SUPPLIED,                                          TAGS_MATRIX_SOURCE));      m_CostFile = costFile;    } else {      setCostMatrixSource(new SelectedTag(MATRIX_ON_DEMAND,                                           TAGS_MATRIX_SOURCE));    }        String demandDir = Utils.getOption('D', options);    if (demandDir.length() != 0) {      setOnDemandDirectory(new File(demandDir));    }    String cost_matrix = Utils.getOption("cost-matrix", options);    if (cost_matrix.length() != 0) {      StringWriter writer = new StringWriter();      CostMatrix.parseMatlab(cost_matrix).write(writer);      setCostMatrix(new CostMatrix(new StringReader(writer.toString())));      setCostMatrixSource(new SelectedTag(MATRIX_SUPPLIED,                                          TAGS_MATRIX_SOURCE));    }        super.setOptions(options);  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] superOptions = super.getOptions();    String [] options = new String [superOptions.length + 7];    int current = 0;    if (m_MatrixSource == MATRIX_SUPPLIED) {      if (m_CostFile != null) {        options[current++] = "-C";        options[current++] = "" + m_CostFile;      }      else {        options[current++] = "-cost-matrix";        options[current++] = getCostMatrix().toMatlab();      }    } else {      options[current++] = "-N";      options[current++] = "" + getOnDemandDirectory();    }    if (getMinimizeExpectedCost()) {      options[current++] = "-M";    }    System.arraycopy(superOptions, 0, options, current, 		     superOptions.length);    while (current < options.length) {      if (options[current] == null) {        options[current] = "";      }      current++;    }    return options;  }  /**   * @return a description of the classifier suitable for   * displaying in the explorer/experimenter gui   */

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -