⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 metacost.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
    }    String cost_matrix= Utils.getOption("cost-matrix", options);    if (cost_matrix.length() != 0) {      StringWriter writer = new StringWriter();      CostMatrix.parseMatlab(cost_matrix).write(writer);      setCostMatrix(new CostMatrix(new StringReader(writer.toString())));      setCostMatrixSource(new SelectedTag(MATRIX_SUPPLIED,                                          TAGS_MATRIX_SOURCE));    }        super.setOptions(options);  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] superOptions = super.getOptions();    String [] options;    options = new String [superOptions.length + 6];    int current = 0;    if (m_MatrixSource == MATRIX_SUPPLIED) {      if (m_CostFile != null) {        options[current++] = "-C";        options[current++] = "" + m_CostFile;      }      else {        options[current++] = "-cost-matrix";        options[current++] = getCostMatrix().toMatlab();      }    } else {      options[current++] = "-N";      options[current++] = "" + getOnDemandDirectory();    }    options[current++] = "-I"; options[current++] = "" + getNumIterations();    options[current++] = "-P"; options[current++] = "" + getBagSizePercent();    System.arraycopy(superOptions, 0, options, current, 		     superOptions.length);    return options;  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String costMatrixSourceTipText() {    return "Gets the source location method of the cost matrix. Will "      + "be one of MATRIX_ON_DEMAND or MATRIX_SUPPLIED.";  }  /**   * Gets the source location method of the cost matrix. Will be one of   * MATRIX_ON_DEMAND or MATRIX_SUPPLIED.   *   * @return the cost matrix source.   */  public SelectedTag getCostMatrixSource() {    return new SelectedTag(m_MatrixSource, TAGS_MATRIX_SOURCE);  }    /**   * Sets the source location of the cost matrix. Values other than   * MATRIX_ON_DEMAND or MATRIX_SUPPLIED will be ignored.   *   * @param newMethod the cost matrix location method.   */  public void setCostMatrixSource(SelectedTag newMethod) {        if (newMethod.getTags() == TAGS_MATRIX_SOURCE) {      m_MatrixSource = newMethod.getSelectedTag().getID();    }  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String onDemandDirectoryTipText() {    return "Name of directory to search for cost files when loading "      + "costs on demand.";  }  /**   * Returns the directory that will be searched for cost files when   * loading on demand.   *   * @return The cost file search directory.   */  public File getOnDemandDirectory() {    return m_OnDemandDirectory;  }  /**   * Sets the directory that will be searched for cost files when   * loading on demand.   *   * @param newDir The cost file search directory.   */  public void setOnDemandDirectory(File newDir) {    if (newDir.isDirectory()) {      m_OnDemandDirectory = newDir;    } else {      m_OnDemandDirectory = new File(newDir.getParent());    }    m_MatrixSource = MATRIX_ON_DEMAND;  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String bagSizePercentTipText() {    return "The size of each bag, as a percentage of the training set "      + "size.";  }  /**   * Gets the size of each bag, as a percentage of the training set size.   *   * @return the bag size, as a percentage.   */  public int getBagSizePercent() {    return m_BagSizePercent;  }    /**   * Sets the size of each bag, as a percentage of the training set size.   *   * @param newBagSizePercent the bag size, as a percentage.   */  public void setBagSizePercent(int newBagSizePercent) {    m_BagSizePercent = newBagSizePercent;  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String numIterationsTipText() {    return "The number of bagging iterations.";  }    /**   * Sets the number of bagging iterations   *    * @param numIterations the number of iterations to use   */  public void setNumIterations(int numIterations) {    m_NumIterations = numIterations;  }  /**   * Gets the number of bagging iterations   *   * @return the maximum number of bagging iterations   */  public int getNumIterations() {        return m_NumIterations;  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String costMatrixTipText() {    return "A misclassification cost matrix.";  }  /**   * Gets the misclassification cost matrix.   *   * @return the cost matrix   */  public CostMatrix getCostMatrix() {        return m_CostMatrix;  }    /**   * Sets the misclassification cost matrix.   *   * @param newCostMatrix the cost matrix   */  public void setCostMatrix(CostMatrix newCostMatrix) {        m_CostMatrix = newCostMatrix;    m_MatrixSource = MATRIX_SUPPLIED;  }  /**   * Returns default capabilities of the classifier.   *   * @return      the capabilities of this classifier   */  public Capabilities getCapabilities() {    Capabilities result = super.getCapabilities();    // class    result.disableAllClasses();    result.disableAllClassDependencies();    result.enable(Capability.NOMINAL_CLASS);        return result;  }  /**   * Builds the model of the base learner.   *   * @param data the training data   * @throws Exception if the classifier could not be built successfully   */  public void buildClassifier(Instances data) throws Exception {    // can classifier handle the data?    getCapabilities().testWithFail(data);    // remove instances with missing class    data = new Instances(data);    data.deleteWithMissingClass();        if (m_MatrixSource == MATRIX_ON_DEMAND) {      String costName = data.relationName() + CostMatrix.FILE_EXTENSION;      File costFile = new File(getOnDemandDirectory(), costName);      if (!costFile.exists()) {        throw new Exception("On-demand cost file doesn't exist: " + costFile);      }      setCostMatrix(new CostMatrix(new BufferedReader(                                   new FileReader(costFile))));    }    // Set up the bagger    Bagging bagger = new Bagging();    bagger.setClassifier(getClassifier());    bagger.setSeed(getSeed());    bagger.setNumIterations(getNumIterations());    bagger.setBagSizePercent(getBagSizePercent());    bagger.buildClassifier(data);        // Use the bagger to reassign class values according to minimum expected    // cost    Instances newData = new Instances(data);    for (int i = 0; i < newData.numInstances(); i++) {      Instance current = newData.instance(i);      double [] pred = bagger.distributionForInstance(current);      int minCostPred = Utils.minIndex(m_CostMatrix.expectedCosts(pred));      current.setClassValue(minCostPred);    }    // Build a classifier using the reassigned data    m_Classifier.buildClassifier(newData);  }  /**   * Classifies a given instance after filtering.   *   * @param instance the instance to be classified   * @return the class distribution for the given instance   * @throws Exception if instance could not be classified   * successfully   */  public double[] distributionForInstance(Instance instance) throws Exception {    return m_Classifier.distributionForInstance(instance);  }  /**   * Gets the classifier specification string, which contains the   * class name of the classifier and any options to the classifier   *   * @return the classifier string.   */  protected String getClassifierSpec() {        Classifier c = getClassifier();    return c.getClass().getName() + " "      + Utils.joinOptions(((OptionHandler)c).getOptions());  }  /**   * Output a representation of this classifier   *    * @return a string representaiton of the classifier    */  public String toString() {    if (m_Classifier == null) {      return "MetaCost: No model built yet.";    }    String result = "MetaCost cost sensitive classifier induction";    result += "\nOptions: " + Utils.joinOptions(getOptions());    result += "\nBase learner: " + getClassifierSpec()      + "\n\nClassifier Model\n"      + m_Classifier.toString()      + "\n\nCost Matrix\n"      + m_CostMatrix.toString();        return result;  }  /**   * Main method for testing this class.   *   * @param argv should contain the following arguments:   * -t training file [-T test file] [-c class index]   */  public static void main(String [] argv) {    runClassifier(new MetaCost(), argv);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -