⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 end.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    END.java *    Copyright (C) 2004-2005 University of Waikato * */package weka.classifiers.meta;import weka.classifiers.Classifier;import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.Randomizable;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import java.util.Hashtable;import java.util.Random;/** <!-- globalinfo-start --> * A meta classifier for handling multi-class datasets with 2-class classifiers by building an ensemble of nested dichotomies.<br/> * <br/> * For more info, check<br/> * <br/> * Lin Dong, Eibe Frank, Stefan Kramer: Ensembles of Balanced Nested Dichotomies for Multi-class Problems. In: PKDD, 84-95, 2005.<br/> * <br/> * Eibe Frank, Stefan Kramer: Ensembles of nested dichotomies for multi-class problems. In: Twenty-first International Conference on Machine Learning, 2004. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * &#64;inproceedings{Dong2005, *    author = {Lin Dong and Eibe Frank and Stefan Kramer}, *    booktitle = {PKDD}, *    pages = {84-95}, *    publisher = {Springer}, *    title = {Ensembles of Balanced Nested Dichotomies for Multi-class Problems}, *    year = {2005} * } *  * &#64;inproceedings{Frank2004, *    author = {Eibe Frank and Stefan Kramer}, *    booktitle = {Twenty-first International Conference on Machine Learning}, *    publisher = {ACM}, *    title = {Ensembles of nested dichotomies for multi-class problems}, *    year = {2004} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -S &lt;num&gt; *  Random number seed. *  (default 1)</pre> *  * <pre> -I &lt;num&gt; *  Number of iterations. *  (default 10)</pre> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  * <pre> -W *  Full name of base classifier. *  (default: weka.classifiers.meta.nestedDichotomies.ND)</pre> *  * <pre>  * Options specific to classifier weka.classifiers.meta.nestedDichotomies.ND: * </pre> *  * <pre> -S &lt;num&gt; *  Random number seed. *  (default 1)</pre> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  * <pre> -W *  Full name of base classifier. *  (default: weka.classifiers.trees.J48)</pre> *  * <pre>  * Options specific to classifier weka.classifiers.trees.J48: * </pre> *  * <pre> -U *  Use unpruned tree.</pre> *  * <pre> -C &lt;pruning confidence&gt; *  Set confidence threshold for pruning. *  (default 0.25)</pre> *  * <pre> -M &lt;minimum number of instances&gt; *  Set minimum number of instances per leaf. *  (default 2)</pre> *  * <pre> -R *  Use reduced error pruning.</pre> *  * <pre> -N &lt;number of folds&gt; *  Set number of folds for reduced error *  pruning. One fold is used as pruning set. *  (default 3)</pre> *  * <pre> -B *  Use binary splits only.</pre> *  * <pre> -S *  Don't perform subtree raising.</pre> *  * <pre> -L *  Do not clean up after the tree has been built.</pre> *  * <pre> -A *  Laplace smoothing for predicted probabilities.</pre> *  * <pre> -Q &lt;seed&gt; *  Seed for random data shuffling (default 1).</pre> *  <!-- options-end --> * * Options after -- are passed to the designated classifier.<p> * * @author Eibe Frank * @author Lin Dong * @version $Revision: 1.6 $ */public class END   extends RandomizableIteratedSingleClassifierEnhancer  implements TechnicalInformationHandler {    /** for serialization */  static final long serialVersionUID = -4143242362912214956L;    /**   * The hashtable containing the classifiers for the END.   */  protected Hashtable m_hashtable = null;    /**   * Constructor.   */  public END() {        m_Classifier = new weka.classifiers.meta.nestedDichotomies.ND();  }    /**   * String describing default classifier.   *    * @return the default classifier classname   */  protected String defaultClassifierString() {        return "weka.classifiers.meta.nestedDichotomies.ND";  }    /**   * Returns a string describing classifier   * @return a description suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {        return "A meta classifier for handling multi-class datasets with 2-class "      + "classifiers by building an ensemble of nested dichotomies.\n\n"      + "For more info, check\n\n"      + getTechnicalInformation().toString();  }  /**   * Returns an instance of a TechnicalInformation object, containing    * detailed information about the technical background of this class,   * e.g., paper reference or book this class is based on.   *    * @return the technical information about this class   */  public TechnicalInformation getTechnicalInformation() {    TechnicalInformation 	result;    TechnicalInformation 	additional;        result = new TechnicalInformation(Type.INPROCEEDINGS);    result.setValue(Field.AUTHOR, "Lin Dong and Eibe Frank and Stefan Kramer");    result.setValue(Field.TITLE, "Ensembles of Balanced Nested Dichotomies for Multi-class Problems");    result.setValue(Field.BOOKTITLE, "PKDD");    result.setValue(Field.YEAR, "2005");    result.setValue(Field.PAGES, "84-95");    result.setValue(Field.PUBLISHER, "Springer");    additional = result.add(Type.INPROCEEDINGS);    additional.setValue(Field.AUTHOR, "Eibe Frank and Stefan Kramer");    additional.setValue(Field.TITLE, "Ensembles of nested dichotomies for multi-class problems");    additional.setValue(Field.BOOKTITLE, "Twenty-first International Conference on Machine Learning");    additional.setValue(Field.YEAR, "2004");    additional.setValue(Field.PUBLISHER, "ACM");        return result;  }  /**   * Returns default capabilities of the classifier.   *   * @return      the capabilities of this classifier   */  public Capabilities getCapabilities() {    Capabilities result = super.getCapabilities();    // instances    result.setMinimumNumberInstances(1);  // at least 1 for the RandomNumberGenerator!        return result;  }    /**   * Builds the committee of randomizable classifiers.   *   * @param data the training data to be used for generating the   * bagged classifier.   * @throws Exception if the classifier could not be built successfully   */  public void buildClassifier(Instances data) throws Exception {        // can classifier handle the data?    getCapabilities().testWithFail(data);    // remove instances with missing class    data = new Instances(data);    data.deleteWithMissingClass();        if (!(m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.ND) && 	!(m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.ClassBalancedND) &&  	!(m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.DataNearBalancedND)) {      throw new IllegalArgumentException("END only works with ND, ClassBalancedND " +					 "or DataNearBalancedND classifier");    }        m_hashtable = new Hashtable();        m_Classifiers = Classifier.makeCopies(m_Classifier, m_NumIterations);        Random random = data.getRandomNumberGenerator(m_Seed);    for (int j = 0; j < m_Classifiers.length; j++) {            // Set the random number seed for the current classifier.      ((Randomizable) m_Classifiers[j]).setSeed(random.nextInt());            // Set the hashtable      if (m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.ND) 	((weka.classifiers.meta.nestedDichotomies.ND)m_Classifiers[j]).setHashtable(m_hashtable);      else if (m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.ClassBalancedND) 	((weka.classifiers.meta.nestedDichotomies.ClassBalancedND)m_Classifiers[j]).setHashtable(m_hashtable);      else if (m_Classifier instanceof weka.classifiers.meta.nestedDichotomies.DataNearBalancedND) 	((weka.classifiers.meta.nestedDichotomies.DataNearBalancedND)m_Classifiers[j]).	  setHashtable(m_hashtable);            // Build the classifier.      m_Classifiers[j].buildClassifier(data);    }  }    /**   * Calculates the class membership probabilities for the given test   * instance.   *   * @param instance the instance to be classified   * @return preedicted class probability distribution   * @throws Exception if distribution can't be computed successfully    */  public double[] distributionForInstance(Instance instance) throws Exception {        double [] sums = new double [instance.numClasses()], newProbs;         for (int i = 0; i < m_NumIterations; i++) {      if (instance.classAttribute().isNumeric() == true) {	sums[0] += m_Classifiers[i].classifyInstance(instance);      } else {	newProbs = m_Classifiers[i].distributionForInstance(instance);	for (int j = 0; j < newProbs.length; j++)	  sums[j] += newProbs[j];      }    }    if (instance.classAttribute().isNumeric() == true) {      sums[0] /= (double)m_NumIterations;      return sums;    } else if (Utils.eq(Utils.sum(sums), 0)) {      return sums;    } else {      Utils.normalize(sums);      return sums;    }  }    /**   * Returns description of the committee.   *   * @return description of the committee as a string   */  public String toString() {        if (m_Classifiers == null) {      return "END: No model built yet.";    }    StringBuffer text = new StringBuffer();    text.append("All the base classifiers: \n\n");    for (int i = 0; i < m_Classifiers.length; i++)      text.append(m_Classifiers[i].toString() + "\n\n");        return text.toString();  }    /**   * Main method for testing this class.   *   * @param argv the options   */  public static void main(String [] argv) {    runClassifier(new END(), argv);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -