⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ordinalclassclassifier.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    OrdinalClassClassifier.java *    Copyright (C) 2001 Mark Hall * */package weka.classifiers.meta;import weka.classifiers.Classifier;import weka.classifiers.SingleClassifierEnhancer;import weka.classifiers.rules.ZeroR;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.OptionHandler;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.Capabilities.Capability;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import weka.filters.Filter;import weka.filters.unsupervised.attribute.MakeIndicator;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * Meta classifier that allows standard classification algorithms to be applied to ordinal class problems.<br/> * <br/> * For more information see: <br/> * <br/> * Eibe Frank, Mark Hall: A Simple Approach to Ordinal Classification. In: 12th European Conference on Machine Learning, 145-156, 2001. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * &#64;inproceedings{Frank2001, *    author = {Eibe Frank and Mark Hall}, *    booktitle = {12th European Conference on Machine Learning}, *    pages = {145-156}, *    publisher = {Springer}, *    title = {A Simple Approach to Ordinal Classification}, *    year = {2001} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  * <pre> -W *  Full name of base classifier. *  (default: weka.classifiers.trees.J48)</pre> *  * <pre>  * Options specific to classifier weka.classifiers.trees.J48: * </pre> *  * <pre> -U *  Use unpruned tree.</pre> *  * <pre> -C &lt;pruning confidence&gt; *  Set confidence threshold for pruning. *  (default 0.25)</pre> *  * <pre> -M &lt;minimum number of instances&gt; *  Set minimum number of instances per leaf. *  (default 2)</pre> *  * <pre> -R *  Use reduced error pruning.</pre> *  * <pre> -N &lt;number of folds&gt; *  Set number of folds for reduced error *  pruning. One fold is used as pruning set. *  (default 3)</pre> *  * <pre> -B *  Use binary splits only.</pre> *  * <pre> -S *  Don't perform subtree raising.</pre> *  * <pre> -L *  Do not clean up after the tree has been built.</pre> *  * <pre> -A *  Laplace smoothing for predicted probabilities.</pre> *  * <pre> -Q &lt;seed&gt; *  Seed for random data shuffling (default 1).</pre> *  <!-- options-end --> * * @author <a href="mailto:mhall@cs.waikato.ac.nz">Mark Hall</a> * @version $Revision 1.0 $ * @see OptionHandler */public class OrdinalClassClassifier   extends SingleClassifierEnhancer   implements OptionHandler, TechnicalInformationHandler {    /** for serialization */  static final long serialVersionUID = -3461971774059603636L;  /** The classifiers. (One for each class.) */  private Classifier [] m_Classifiers;  /** The filters used to transform the class. */  private MakeIndicator[] m_ClassFilters;  /** ZeroR classifier for when all base classifier return zero probability. */  private ZeroR m_ZeroR;  /**   * String describing default classifier.   *    * @return the default classifier classname   */  protected String defaultClassifierString() {        return "weka.classifiers.trees.J48";  }  /**   * Default constructor.   */  public OrdinalClassClassifier() {    m_Classifier = new weka.classifiers.trees.J48();  }  /**   * Returns a string describing this attribute evaluator   * @return a description of the evaluator suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "Meta classifier that allows standard classification algorithms "      +"to be applied to ordinal class problems.\n\n"      + "For more information see: \n\n"      + getTechnicalInformation().toString();  }  /**   * Returns an instance of a TechnicalInformation object, containing    * detailed information about the technical background of this class,   * e.g., paper reference or book this class is based on.   *    * @return the technical information about this class   */  public TechnicalInformation getTechnicalInformation() {    TechnicalInformation 	result;        result = new TechnicalInformation(Type.INPROCEEDINGS);    result.setValue(Field.AUTHOR, "Eibe Frank and Mark Hall");    result.setValue(Field.TITLE, "A Simple Approach to Ordinal Classification");    result.setValue(Field.BOOKTITLE, "12th European Conference on Machine Learning");    result.setValue(Field.YEAR, "2001");    result.setValue(Field.PAGES, "145-156");    result.setValue(Field.PUBLISHER, "Springer");        return result;  }  /**   * Returns default capabilities of the classifier.   *   * @return      the capabilities of this classifier   */  public Capabilities getCapabilities() {    Capabilities result = super.getCapabilities();    // class    result.disableAllClasses();    result.disableAllClassDependencies();    result.enable(Capability.NOMINAL_CLASS);        return result;  }  /**   * Builds the classifiers.   *   * @param insts the training data.   * @throws Exception if a classifier can't be built   */  public void buildClassifier(Instances insts) throws Exception {    Instances newInsts;    // can classifier handle the data?    getCapabilities().testWithFail(insts);    // remove instances with missing class    insts = new Instances(insts);    insts.deleteWithMissingClass();        if (m_Classifier == null) {      throw new Exception("No base classifier has been set!");    }    m_ZeroR = new ZeroR();    m_ZeroR.buildClassifier(insts);    int numClassifiers = insts.numClasses() - 1;    numClassifiers = (numClassifiers == 0) ? 1 : numClassifiers;    if (numClassifiers == 1) {      m_Classifiers = Classifier.makeCopies(m_Classifier, 1);      m_Classifiers[0].buildClassifier(insts);    } else {      m_Classifiers = Classifier.makeCopies(m_Classifier, numClassifiers);      m_ClassFilters = new MakeIndicator[numClassifiers];      for (int i = 0; i < m_Classifiers.length; i++) {	m_ClassFilters[i] = new MakeIndicator();	m_ClassFilters[i].setAttributeIndex("" + (insts.classIndex() + 1));	m_ClassFilters[i].setValueIndices(""+(i+2)+"-last");	m_ClassFilters[i].setNumeric(false);	m_ClassFilters[i].setInputFormat(insts);	newInsts = Filter.useFilter(insts, m_ClassFilters[i]);	m_Classifiers[i].buildClassifier(newInsts);      }    }  }    /**   * Returns the distribution for an instance.   *   * @param inst the instance to compute the distribution for   * @return the class distribution for the given instance   * @throws Exception if the distribution can't be computed successfully   */  public double [] distributionForInstance(Instance inst) throws Exception {        if (m_Classifiers.length == 1) {      return m_Classifiers[0].distributionForInstance(inst);    }    double [] probs = new double[inst.numClasses()];        double [][] distributions = new double[m_ClassFilters.length][0];    for(int i = 0; i < m_ClassFilters.length; i++) {      m_ClassFilters[i].input(inst);      m_ClassFilters[i].batchFinished();            distributions[i] = m_Classifiers[i].	distributionForInstance(m_ClassFilters[i].output());          }    for (int i = 0; i < inst.numClasses(); i++) {      if (i == 0) {	probs[i] = distributions[0][0];      } else if (i == inst.numClasses() - 1) {	probs[i] = distributions[i - 1][1];      } else {	probs[i] = distributions[i - 1][1] - distributions[i][1];	if (!(probs[i] > 0)) {	  System.err.println("Warning: estimated probability " + probs[i] +	  		     ". Rounding to 0.");	  probs[i] = 0;	}      }    }    if (Utils.gr(Utils.sum(probs), 0)) {      Utils.normalize(probs);      return probs;    } else {      return m_ZeroR.distributionForInstance(inst);    }  }  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions()  {    Vector vec = new Vector();    Enumeration enu = super.listOptions();    while (enu.hasMoreElements()) {      vec.addElement(enu.nextElement());    }    return vec.elements();  }  /**   * Parses a given list of options. <p/>   *   <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -D   *  If set, classifier is run in debug mode and   *  may output additional info to the console</pre>   *    * <pre> -W   *  Full name of base classifier.   *  (default: weka.classifiers.trees.J48)</pre>   *    * <pre>    * Options specific to classifier weka.classifiers.trees.J48:   * </pre>   *    * <pre> -U   *  Use unpruned tree.</pre>   *    * <pre> -C &lt;pruning confidence&gt;   *  Set confidence threshold for pruning.   *  (default 0.25)</pre>   *    * <pre> -M &lt;minimum number of instances&gt;   *  Set minimum number of instances per leaf.   *  (default 2)</pre>   *    * <pre> -R   *  Use reduced error pruning.</pre>   *    * <pre> -N &lt;number of folds&gt;   *  Set number of folds for reduced error   *  pruning. One fold is used as pruning set.   *  (default 3)</pre>   *    * <pre> -B   *  Use binary splits only.</pre>   *    * <pre> -S   *  Don't perform subtree raising.</pre>   *    * <pre> -L   *  Do not clean up after the tree has been built.</pre>   *    * <pre> -A   *  Laplace smoothing for predicted probabilities.</pre>   *    * <pre> -Q &lt;seed&gt;   *  Seed for random data shuffling (default 1).</pre>   *    <!-- options-end -->   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {      super.setOptions(options);  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {        return super.getOptions();  }    /**   * Prints the classifiers.   *    * @return a string representation of this classifier   */  public String toString() {        if (m_Classifiers == null) {      return "OrdinalClassClassifier: No model built yet.";    }    StringBuffer text = new StringBuffer();    text.append("OrdinalClassClassifier\n\n");    for (int i = 0; i < m_Classifiers.length; i++) {      text.append("Classifier ").append(i + 1);      if (m_Classifiers[i] != null) {	 if ((m_ClassFilters != null) && (m_ClassFilters[i] != null)) {          text.append(", using indicator values: ");          text.append(m_ClassFilters[i].getValueRange());        }        text.append('\n');        text.append(m_Classifiers[i].toString() + "\n");      } else {        text.append(" Skipped (no training examples)\n");      }    }    return text.toString();  }  /**   * Main method for testing this class.   *   * @param argv the options   */  public static void main(String [] argv) {    runClassifier(new OrdinalClassClassifier(), argv);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -