⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 bagging.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    Bagging.java *    Copyright (C) 1999 Eibe Frank * */package weka.classifiers.meta;import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer;import weka.core.AdditionalMeasureProducer;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.Randomizable;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.WeightedInstancesHandler;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import java.util.Enumeration;import java.util.Random;import java.util.Vector;/** <!-- globalinfo-start --> * Class for bagging a classifier to reduce variance. Can do classification and regression depending on the base learner. <br/> * <br/> * For more information, see<br/> * <br/> * Leo Breiman (1996). Bagging predictors. Machine Learning. 24(2):123-140. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * &#64;article{Breiman1996, *    author = {Leo Breiman}, *    journal = {Machine Learning}, *    number = {2}, *    pages = {123-140}, *    title = {Bagging predictors}, *    volume = {24}, *    year = {1996} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -P *  Size of each bag, as a percentage of the *  training set size. (default 100)</pre> *  * <pre> -O *  Calculate the out of bag error.</pre> *  * <pre> -S &lt;num&gt; *  Random number seed. *  (default 1)</pre> *  * <pre> -I &lt;num&gt; *  Number of iterations. *  (default 10)</pre> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  * <pre> -W *  Full name of base classifier. *  (default: weka.classifiers.trees.REPTree)</pre> *  * <pre>  * Options specific to classifier weka.classifiers.trees.REPTree: * </pre> *  * <pre> -M &lt;minimum number of instances&gt; *  Set minimum number of instances per leaf (default 2).</pre> *  * <pre> -V &lt;minimum variance for split&gt; *  Set minimum numeric class variance proportion *  of train variance for split (default 1e-3).</pre> *  * <pre> -N &lt;number of folds&gt; *  Number of folds for reduced error pruning (default 3).</pre> *  * <pre> -S &lt;seed&gt; *  Seed for random data shuffling (default 1).</pre> *  * <pre> -P *  No pruning.</pre> *  * <pre> -L *  Maximum tree depth (default -1, no maximum)</pre> *  <!-- options-end --> * * Options after -- are passed to the designated classifier.<p> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Len Trigg (len@reeltwo.com) * @author Richard Kirkby (rkirkby@cs.waikato.ac.nz) * @version $Revision: 1.37 $ */public class Bagging  extends RandomizableIteratedSingleClassifierEnhancer   implements WeightedInstancesHandler, AdditionalMeasureProducer,             TechnicalInformationHandler {  /** for serialization */  static final long serialVersionUID = -505879962237199703L;    /** The size of each bag sample, as a percentage of the training size */  protected int m_BagSizePercent = 100;  /** Whether to calculate the out of bag error */  protected boolean m_CalcOutOfBag = false;  /** The out of bag error that has been calculated */  protected double m_OutOfBagError;        /**   * Constructor.   */  public Bagging() {        m_Classifier = new weka.classifiers.trees.REPTree();  }    /**   * Returns a string describing classifier   * @return a description suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {     return "Class for bagging a classifier to reduce variance. Can do classification "      + "and regression depending on the base learner. \n\n"      + "For more information, see\n\n"      + getTechnicalInformation().toString();  }  /**   * Returns an instance of a TechnicalInformation object, containing    * detailed information about the technical background of this class,   * e.g., paper reference or book this class is based on.   *    * @return the technical information about this class   */  public TechnicalInformation getTechnicalInformation() {    TechnicalInformation 	result;        result = new TechnicalInformation(Type.ARTICLE);    result.setValue(Field.AUTHOR, "Leo Breiman");    result.setValue(Field.YEAR, "1996");    result.setValue(Field.TITLE, "Bagging predictors");    result.setValue(Field.JOURNAL, "Machine Learning");    result.setValue(Field.VOLUME, "24");    result.setValue(Field.NUMBER, "2");    result.setValue(Field.PAGES, "123-140");        return result;  }  /**   * String describing default classifier.   *    * @return the default classifier classname   */  protected String defaultClassifierString() {        return "weka.classifiers.trees.REPTree";  }  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(2);    newVector.addElement(new Option(              "\tSize of each bag, as a percentage of the\n"               + "\ttraining set size. (default 100)",              "P", 1, "-P"));    newVector.addElement(new Option(              "\tCalculate the out of bag error.",              "O", 0, "-O"));    Enumeration enu = super.listOptions();    while (enu.hasMoreElements()) {      newVector.addElement(enu.nextElement());    }    return newVector.elements();  }  /**   * Parses a given list of options. <p/>   *   <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -P   *  Size of each bag, as a percentage of the   *  training set size. (default 100)</pre>   *    * <pre> -O   *  Calculate the out of bag error.</pre>   *    * <pre> -S &lt;num&gt;   *  Random number seed.   *  (default 1)</pre>   *    * <pre> -I &lt;num&gt;   *  Number of iterations.   *  (default 10)</pre>   *    * <pre> -D   *  If set, classifier is run in debug mode and   *  may output additional info to the console</pre>   *    * <pre> -W   *  Full name of base classifier.   *  (default: weka.classifiers.trees.REPTree)</pre>   *    * <pre>    * Options specific to classifier weka.classifiers.trees.REPTree:   * </pre>   *    * <pre> -M &lt;minimum number of instances&gt;   *  Set minimum number of instances per leaf (default 2).</pre>   *    * <pre> -V &lt;minimum variance for split&gt;   *  Set minimum numeric class variance proportion   *  of train variance for split (default 1e-3).</pre>   *    * <pre> -N &lt;number of folds&gt;   *  Number of folds for reduced error pruning (default 3).</pre>   *    * <pre> -S &lt;seed&gt;   *  Seed for random data shuffling (default 1).</pre>   *    * <pre> -P   *  No pruning.</pre>   *    * <pre> -L   *  Maximum tree depth (default -1, no maximum)</pre>   *    <!-- options-end -->   *   * Options after -- are passed to the designated classifier.<p>   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    String bagSize = Utils.getOption('P', options);    if (bagSize.length() != 0) {      setBagSizePercent(Integer.parseInt(bagSize));    } else {      setBagSizePercent(100);    }    setCalcOutOfBag(Utils.getFlag('O', options));    super.setOptions(options);  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] superOptions = super.getOptions();    String [] options = new String [superOptions.length + 3];    int current = 0;    options[current++] = "-P";     options[current++] = "" + getBagSizePercent();    if (getCalcOutOfBag()) {       options[current++] = "-O";    }    System.arraycopy(superOptions, 0, options, current, 		     superOptions.length);    current += superOptions.length;    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -