⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 attributeselectedclassifier.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
  }  /**   * Sets the attribute evaluator   *   * @param evaluator the evaluator with all options set.   */  public void setEvaluator(ASEvaluation evaluator) {    m_Evaluator = evaluator;  }  /**   * Gets the attribute evaluator used   *   * @return the attribute evaluator   */  public ASEvaluation getEvaluator() {    return m_Evaluator;  }  /**   * Gets the evaluator specification string, which contains the class name of   * the attribute evaluator and any options to it   *   * @return the evaluator string.   */  protected String getEvaluatorSpec() {        ASEvaluation e = getEvaluator();    if (e instanceof OptionHandler) {      return e.getClass().getName() + " "	+ Utils.joinOptions(((OptionHandler)e).getOptions());    }    return e.getClass().getName();  }  /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String searchTipText() {    return "Set the search method. This search method is used "      +"during the attribute selection phase before the classifier is "      +"invoked.";  }    /**   * Sets the search method   *   * @param search the search method with all options set.   */  public void setSearch(ASSearch search) {    m_Search = search;  }  /**   * Gets the search method used   *   * @return the search method   */  public ASSearch getSearch() {    return m_Search;  }  /**   * Gets the search specification string, which contains the class name of   * the search method and any options to it   *   * @return the search string.   */  protected String getSearchSpec() {        ASSearch s = getSearch();    if (s instanceof OptionHandler) {      return s.getClass().getName() + " "	+ Utils.joinOptions(((OptionHandler)s).getOptions());    }    return s.getClass().getName();  }  /**   * Returns default capabilities of the classifier.   *   * @return      the capabilities of this classifier   */  public Capabilities getCapabilities() {    Capabilities	result;        if (getEvaluator() == null)      result = super.getCapabilities();    else      result = getEvaluator().getCapabilities();        // set dependencies    for (Capability cap: Capability.values())      result.enableDependency(cap);        return result;  }  /**   * Build the classifier on the dimensionally reduced data.   *   * @param data the training data   * @throws Exception if the classifier could not be built successfully   */  public void buildClassifier(Instances data) throws Exception {    if (m_Classifier == null) {      throw new Exception("No base classifier has been set!");    }    if (m_Evaluator == null) {      throw new Exception("No attribute evaluator has been set!");    }    if (m_Search == null) {      throw new Exception("No search method has been set!");    }       // can classifier handle the data?    getCapabilities().testWithFail(data);    // remove instances with missing class    Instances newData = new Instances(data);    newData.deleteWithMissingClass();        if (newData.numInstances() == 0) {      m_Classifier.buildClassifier(newData);      return;    }    if (newData.classAttribute().isNominal()) {      m_numClasses = newData.classAttribute().numValues();    } else {      m_numClasses = 1;    }    Instances resampledData = null;    // check to see if training data has all equal weights    double weight = newData.instance(0).weight();    boolean ok = false;    for (int i = 1; i < newData.numInstances(); i++) {      if (newData.instance(i).weight() != weight) {        ok = true;        break;      }    }        if (ok) {      if (!(m_Evaluator instanceof WeightedInstancesHandler) ||           !(m_Classifier instanceof WeightedInstancesHandler)) {        Random r = new Random(1);        for (int i = 0; i < 10; i++) {          r.nextDouble();        }        resampledData = newData.resampleWithWeights(r);      }    } else {      // all equal weights in the training data so just use as is      resampledData = newData;    }    m_AttributeSelection = new AttributeSelection();    m_AttributeSelection.setEvaluator(m_Evaluator);    m_AttributeSelection.setSearch(m_Search);    long start = System.currentTimeMillis();    m_AttributeSelection.      SelectAttributes((m_Evaluator instanceof WeightedInstancesHandler)                        ? newData                       : resampledData);    long end = System.currentTimeMillis();    if (m_Classifier instanceof WeightedInstancesHandler) {      newData = m_AttributeSelection.reduceDimensionality(newData);      m_Classifier.buildClassifier(newData);    } else {      resampledData = m_AttributeSelection.reduceDimensionality(resampledData);      m_Classifier.buildClassifier(resampledData);    }    long end2 = System.currentTimeMillis();    m_numAttributesSelected = m_AttributeSelection.numberAttributesSelected();    m_ReducedHeader =       new Instances((m_Classifier instanceof WeightedInstancesHandler) ?                    newData                    : resampledData, 0);    m_selectionTime = (double)(end - start);    m_totalTime = (double)(end2 - start);  }  /**   * Classifies a given instance after attribute selection   *   * @param instance the instance to be classified   * @return the class distribution   * @throws Exception if instance could not be classified   * successfully   */  public double [] distributionForInstance(Instance instance)    throws Exception {    Instance newInstance;    if (m_AttributeSelection == null) {      //      throw new Exception("AttributeSelectedClassifier: No model built yet!");      newInstance = instance;    } else {      newInstance = m_AttributeSelection.reduceDimensionality(instance);    }    return m_Classifier.distributionForInstance(newInstance);  }  /**   *  Returns the type of graph this classifier   *  represents.   *     *  @return the type of graph   */     public int graphType() {        if (m_Classifier instanceof Drawable)      return ((Drawable)m_Classifier).graphType();    else       return Drawable.NOT_DRAWABLE;  }  /**   * Returns graph describing the classifier (if possible).   *   * @return the graph of the classifier in dotty format   * @throws Exception if the classifier cannot be graphed   */  public String graph() throws Exception {        if (m_Classifier instanceof Drawable)      return ((Drawable)m_Classifier).graph();    else throw new Exception("Classifier: " + getClassifierSpec()			     + " cannot be graphed");  }  /**   * Output a representation of this classifier   *    * @return a representation of this classifier   */  public String toString() {    if (m_AttributeSelection == null) {      return "AttributeSelectedClassifier: No attribute selection possible.\n\n"	+m_Classifier.toString();    }    StringBuffer result = new StringBuffer();    result.append("AttributeSelectedClassifier:\n\n");    result.append(m_AttributeSelection.toResultsString());    result.append("\n\nHeader of reduced data:\n"+m_ReducedHeader.toString());    result.append("\n\nClassifier Model\n"+m_Classifier.toString());    return result.toString();  }  /**   * Additional measure --- number of attributes selected   * @return the number of attributes selected   */  public double measureNumAttributesSelected() {    return m_numAttributesSelected;  }  /**   * Additional measure --- time taken (milliseconds) to select the attributes   * @return the time taken to select attributes   */  public double measureSelectionTime() {    return m_selectionTime;  }  /**   * Additional measure --- time taken (milliseconds) to select attributes   * and build the classifier   * @return the total time (select attributes + build classifier)   */  public double measureTime() {    return m_totalTime;  }  /**   * Returns an enumeration of the additional measure names   * @return an enumeration of the measure names   */  public Enumeration enumerateMeasures() {    Vector newVector = new Vector(3);    newVector.addElement("measureNumAttributesSelected");    newVector.addElement("measureSelectionTime");    newVector.addElement("measureTime");    if (m_Classifier instanceof AdditionalMeasureProducer) {      Enumeration en = ((AdditionalMeasureProducer)m_Classifier).	enumerateMeasures();      while (en.hasMoreElements()) {	String mname = (String)en.nextElement();	newVector.addElement(mname);      }    }    return newVector.elements();  }    /**   * Returns the value of the named measure   * @param additionalMeasureName the name of the measure to query for its value   * @return the value of the named measure   * @throws IllegalArgumentException if the named measure is not supported   */  public double getMeasure(String additionalMeasureName) {    if (additionalMeasureName.compareToIgnoreCase("measureNumAttributesSelected") == 0) {      return measureNumAttributesSelected();    } else if (additionalMeasureName.compareToIgnoreCase("measureSelectionTime") == 0) {      return measureSelectionTime();    } else if (additionalMeasureName.compareToIgnoreCase("measureTime") == 0) {      return measureTime();    } else if (m_Classifier instanceof AdditionalMeasureProducer) {      return ((AdditionalMeasureProducer)m_Classifier).	getMeasure(additionalMeasureName);    } else {      throw new IllegalArgumentException(additionalMeasureName 			  + " not supported (AttributeSelectedClassifier)");    }  }  /**   * Main method for testing this class.   *   * @param argv should contain the following arguments:   * -t training file [-T test file] [-c class index]   */  public static void main(String [] argv) {    runClassifier(new AttributeSelectedClassifier(), argv);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -