⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 adaboostm1.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    AdaBoostM1.java *    Copyright (C) 1999 Eibe Frank,Len Trigg * */package weka.classifiers.meta;import weka.classifiers.Evaluation;import weka.classifiers.RandomizableIteratedSingleClassifierEnhancer;import weka.classifiers.Sourcable;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.Randomizable;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.WeightedInstancesHandler;import weka.core.Capabilities.Capability;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import java.util.Enumeration;import java.util.Random;import java.util.Vector;/** <!-- globalinfo-start --> * Class for boosting a nominal class classifier using the Adaboost M1 method. Only nominal class problems can be tackled. Often dramatically improves performance, but sometimes overfits.<br/> * <br/> * For more information, see<br/> * <br/> * Yoav Freund, Robert E. Schapire: Experiments with a new boosting algorithm. In: Thirteenth International Conference on Machine Learning, San Francisco, 148-156, 1996. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * &#64;inproceedings{Freund1996, *    address = {San Francisco}, *    author = {Yoav Freund and Robert E. Schapire}, *    booktitle = {Thirteenth International Conference on Machine Learning}, *    pages = {148-156}, *    publisher = {Morgan Kaufmann}, *    title = {Experiments with a new boosting algorithm}, *    year = {1996} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -P &lt;num&gt; *  Percentage of weight mass to base training on. *  (default 100, reduce to around 90 speed up)</pre> *  * <pre> -Q *  Use resampling for boosting.</pre> *  * <pre> -S &lt;num&gt; *  Random number seed. *  (default 1)</pre> *  * <pre> -I &lt;num&gt; *  Number of iterations. *  (default 10)</pre> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  * <pre> -W *  Full name of base classifier. *  (default: weka.classifiers.trees.DecisionStump)</pre> *  * <pre>  * Options specific to classifier weka.classifiers.trees.DecisionStump: * </pre> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  <!-- options-end --> * * Options after -- are passed to the designated classifier.<p> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @author Len Trigg (trigg@cs.waikato.ac.nz) * @version $Revision: 1.34 $  */public class AdaBoostM1   extends RandomizableIteratedSingleClassifierEnhancer   implements WeightedInstancesHandler, Sourcable, TechnicalInformationHandler {  /** for serialization */  static final long serialVersionUID = -7378107808933117974L;    /** Max num iterations tried to find classifier with non-zero error. */   private static int MAX_NUM_RESAMPLING_ITERATIONS = 10;    /** Array for storing the weights for the votes. */  protected double [] m_Betas;  /** The number of successfully generated base classifiers. */  protected int m_NumIterationsPerformed;  /** Weight Threshold. The percentage of weight mass used in training */  protected int m_WeightThreshold = 100;  /** Use boosting with reweighting? */  protected boolean m_UseResampling;  /** The number of classes */  protected int m_NumClasses;    /**   * Constructor.   */  public AdaBoostM1() {        m_Classifier = new weka.classifiers.trees.DecisionStump();  }      /**   * Returns a string describing classifier   * @return a description suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {     return "Class for boosting a nominal class classifier using the Adaboost "      + "M1 method. Only nominal class problems can be tackled. Often "      + "dramatically improves performance, but sometimes overfits.\n\n"      + "For more information, see\n\n"      + getTechnicalInformation().toString();  }  /**   * Returns an instance of a TechnicalInformation object, containing    * detailed information about the technical background of this class,   * e.g., paper reference or book this class is based on.   *    * @return the technical information about this class   */  public TechnicalInformation getTechnicalInformation() {    TechnicalInformation 	result;        result = new TechnicalInformation(Type.INPROCEEDINGS);    result.setValue(Field.AUTHOR, "Yoav Freund and Robert E. Schapire");    result.setValue(Field.TITLE, "Experiments with a new boosting algorithm");    result.setValue(Field.BOOKTITLE, "Thirteenth International Conference on Machine Learning");    result.setValue(Field.YEAR, "1996");    result.setValue(Field.PAGES, "148-156");    result.setValue(Field.PUBLISHER, "Morgan Kaufmann");    result.setValue(Field.ADDRESS, "San Francisco");        return result;  }  /**   * String describing default classifier.   *    * @return the default classifier classname   */  protected String defaultClassifierString() {        return "weka.classifiers.trees.DecisionStump";  }  /**   * Select only instances with weights that contribute to    * the specified quantile of the weight distribution   *   * @param data the input instances   * @param quantile the specified quantile eg 0.9 to select    * 90% of the weight mass   * @return the selected instances   */  protected Instances selectWeightQuantile(Instances data, double quantile) {     int numInstances = data.numInstances();    Instances trainData = new Instances(data, numInstances);    double [] weights = new double [numInstances];    double sumOfWeights = 0;    for(int i = 0; i < numInstances; i++) {      weights[i] = data.instance(i).weight();      sumOfWeights += weights[i];    }    double weightMassToSelect = sumOfWeights * quantile;    int [] sortedIndices = Utils.sort(weights);    // Select the instances    sumOfWeights = 0;    for(int i = numInstances - 1; i >= 0; i--) {      Instance instance = (Instance)data.instance(sortedIndices[i]).copy();      trainData.add(instance);      sumOfWeights += weights[sortedIndices[i]];      if ((sumOfWeights > weightMassToSelect) && 	  (i > 0) && 	  (weights[sortedIndices[i]] != weights[sortedIndices[i - 1]])) {	break;      }    }    if (m_Debug) {      System.err.println("Selected " + trainData.numInstances()			 + " out of " + numInstances);    }    return trainData;  }  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector();    newVector.addElement(new Option(	"\tPercentage of weight mass to base training on.\n"	+"\t(default 100, reduce to around 90 speed up)",	"P", 1, "-P <num>"));        newVector.addElement(new Option(	"\tUse resampling for boosting.",	"Q", 0, "-Q"));    Enumeration enu = super.listOptions();    while (enu.hasMoreElements()) {      newVector.addElement(enu.nextElement());    }        return newVector.elements();  }  /**   * Parses a given list of options. <p/>   *   <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -P &lt;num&gt;   *  Percentage of weight mass to base training on.   *  (default 100, reduce to around 90 speed up)</pre>   *    * <pre> -Q   *  Use resampling for boosting.</pre>   *    * <pre> -S &lt;num&gt;   *  Random number seed.   *  (default 1)</pre>   *    * <pre> -I &lt;num&gt;   *  Number of iterations.   *  (default 10)</pre>   *    * <pre> -D   *  If set, classifier is run in debug mode and   *  may output additional info to the console</pre>   *    * <pre> -W   *  Full name of base classifier.   *  (default: weka.classifiers.trees.DecisionStump)</pre>   *    * <pre>    * Options specific to classifier weka.classifiers.trees.DecisionStump:   * </pre>   *    * <pre> -D   *  If set, classifier is run in debug mode and   *  may output additional info to the console</pre>   *    <!-- options-end -->   *   * Options after -- are passed to the designated classifier.<p>   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    String thresholdString = Utils.getOption('P', options);    if (thresholdString.length() != 0) {      setWeightThreshold(Integer.parseInt(thresholdString));    } else {      setWeightThreshold(100);    }          setUseResampling(Utils.getFlag('Q', options));    super.setOptions(options);  }  /**   * Gets the current settings of the Classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    Vector        result;    String[]      options;    int           i;        result  = new Vector();    options = super.getOptions();    for (i = 0; i < options.length; i++)      result.add(options[i]);    if (getUseResampling())      result.add("-Q");    result.add("-P");    result.add("" + getWeightThreshold());        return (String[]) result.toArray(new String[result.size()]);  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String weightThresholdTipText() {    return "Weight threshold for weight pruning.";  }  /**   * Set weight threshold   *   * @param threshold the percentage of weight mass used for training   */  public void setWeightThreshold(int threshold) {    m_WeightThreshold = threshold;  }  /**   * Get the degree of weight thresholding   *   * @return the percentage of weight mass used for training   */  public int getWeightThreshold() {    return m_WeightThreshold;

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -