⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 naivebayesupdateable.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    NaiveBayesUpdateable.java *    Copyright (C) 1999 Eibe Frank,Len Trigg * */package weka.classifiers.bayes;import weka.classifiers.UpdateableClassifier;import weka.core.TechnicalInformation;/** <!-- globalinfo-start --> * Class for a Naive Bayes classifier using estimator classes. This is the updateable version of NaiveBayes.<br/> * This classifier will use a default precision of 0.1 for numeric attributes when buildClassifier is called with zero training instances.<br/> * <br/> * For more information on Naive Bayes classifiers, see<br/> * <br/> * George H. John, Pat Langley: Estimating Continuous Distributions in Bayesian Classifiers. In: Eleventh Conference on Uncertainty in Artificial Intelligence, San Mateo, 338-345, 1995. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * &#64;inproceedings{John1995, *    address = {San Mateo}, *    author = {George H. John and Pat Langley}, *    booktitle = {Eleventh Conference on Uncertainty in Artificial Intelligence}, *    pages = {338-345}, *    publisher = {Morgan Kaufmann}, *    title = {Estimating Continuous Distributions in Bayesian Classifiers}, *    year = {1995} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -K *  Use kernel density estimator rather than normal *  distribution for numeric attributes</pre> *  * <pre> -D *  Use supervised discretization to process numeric attributes * </pre> *  <!-- options-end --> * * @author Len Trigg (trigg@cs.waikato.ac.nz) * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.8 $ */public class NaiveBayesUpdateable extends NaiveBayes   implements UpdateableClassifier {    /** for serialization */  static final long serialVersionUID = -5354015843807192221L;   /**   * Returns a string describing this classifier   * @return a description of the classifier suitable for   * displaying in the explorer/experimenter gui   */  public String globalInfo() {    return "Class for a Naive Bayes classifier using estimator classes. This is the "      +"updateable version of NaiveBayes.\n"      +"This classifier will use a default precision of 0.1 for numeric attributes "      +"when buildClassifier is called with zero training instances.\n\n"      +"For more information on Naive Bayes classifiers, see\n\n"      + getTechnicalInformation().toString();  }  /**   * Returns an instance of a TechnicalInformation object, containing    * detailed information about the technical background of this class,   * e.g., paper reference or book this class is based on.   *    * @return the technical information about this class   */  public TechnicalInformation getTechnicalInformation() {    return super.getTechnicalInformation();  }  /**   * Set whether supervised discretization is to be used.   *   * @param newblah true if supervised discretization is to be used.   */  public void setUseSupervisedDiscretization(boolean newblah) {    if (newblah) {      throw new IllegalArgumentException("Can't use discretization " + 					 "in NaiveBayesUpdateable!");    }    m_UseDiscretization = false;  }    /**   * Main method for testing this class.   *   * @param argv the options   */  public static void main(String [] argv) {    runClassifier(new NaiveBayesUpdateable(), argv);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -