📄 aode.java
字号:
// is more efficient in loop(s). int [] attIndex = new int[m_NumAttributes]; for(int att = 0; att < m_NumAttributes; att++) { if(instance.isMissing(att) || att == m_ClassIndex) attIndex[att] = -1; // can't use class or missing values in calculations else attIndex[att] = m_StartAttIndex[att] + (int)instance.value(att); } // calculate probabilities for each possible class value for(int classVal = 0; classVal < m_NumClasses; classVal++) { probs[classVal] = 0; double spodeP = 0; // P(X,y) for current parent and class parentCount = 0; countsForClass = m_CondiCounts[classVal]; // each attribute has a turn of being the parent for(int parent = 0; parent < m_NumAttributes; parent++) { if(attIndex[parent] == -1) continue; // skip class attribute or missing value // determine correct index for the parent in m_CondiCounts matrix pIndex = attIndex[parent]; // check that the att value has a frequency of m_Limit or greater if(m_Frequencies[pIndex] < m_Limit) continue; countsForClassParent = countsForClass[pIndex]; // block the parent from being its own child attIndex[parent] = -1; parentCount++; // joint frequency of class and parent double classparentfreq = countsForClassParent[pIndex]; // find the number of missing values for parent's attribute double missing4ParentAtt = m_Frequencies[m_StartAttIndex[parent] + m_NumAttValues[parent]]; // calculate the prior probability -- P(parent & classVal) if (!m_MEstimates) { spodeP = (classparentfreq + 1.0) / ((m_SumInstances - missing4ParentAtt) + m_NumClasses * m_NumAttValues[parent]); } else { spodeP = (classparentfreq + ((double)m_Weight / (double)(m_NumClasses * m_NumAttValues[parent]))) / ((m_SumInstances - missing4ParentAtt) + m_Weight); } // take into account the value of each attribute for(int att = 0; att < m_NumAttributes; att++) { if(attIndex[att] == -1) continue; double missingForParentandChildAtt = countsForClassParent[m_StartAttIndex[att] + m_NumAttValues[att]]; if(!m_MEstimates) { spodeP *= (countsForClassParent[attIndex[att]] + 1.0) / ((classparentfreq - missingForParentandChildAtt) + m_NumAttValues[att]); } else { spodeP *= (countsForClassParent[attIndex[att]] + ((double)m_Weight / (double)m_NumAttValues[att])) / ((classparentfreq - missingForParentandChildAtt) + m_Weight); } } // add this probability to the overall probability probs[classVal] += spodeP; // unblock the parent attIndex[parent] = pIndex; } // check that at least one att was a parent if(parentCount < 1) { // do plain naive bayes conditional prob probs[classVal] = NBconditionalProb(instance, classVal); } else { // divide by number of parent atts to get the mean probs[classVal] /= (double)(parentCount); } } Utils.normalize(probs); return probs; } /** * Calculates the probability of the specified class for the given test * instance, using naive Bayes. * * @param instance the instance to be classified * @param classVal the class for which to calculate the probability * @return predicted class probability */ public double NBconditionalProb(Instance instance, int classVal) { double prob; double [][] pointer; // calculate the prior probability if(!m_MEstimates) { prob = (m_ClassCounts[classVal] + 1.0) / (m_SumInstances + m_NumClasses); } else { prob = (m_ClassCounts[classVal] + ((double)m_Weight / (double)m_NumClasses)) / (m_SumInstances + m_Weight); } pointer = m_CondiCounts[classVal]; // consider effect of each att value for(int att = 0; att < m_NumAttributes; att++) { if(att == m_ClassIndex || instance.isMissing(att)) continue; // determine correct index for att in m_CondiCounts int aIndex = m_StartAttIndex[att] + (int)instance.value(att); if(!m_MEstimates) { prob *= (double)(pointer[aIndex][aIndex] + 1.0) / ((double)m_SumForCounts[classVal][att] + m_NumAttValues[att]); } else { prob *= (double)(pointer[aIndex][aIndex] + ((double)m_Weight / (double)m_NumAttValues[att])) / (double)(m_SumForCounts[classVal][att] + m_Weight); } } return prob; } /** * Returns an enumeration describing the available options * * @return an enumeration of all the available options */ public Enumeration listOptions() { Vector newVector = new Vector(4); newVector.addElement( new Option("\tOutput debugging information\n", "D", 0,"-D")); newVector.addElement( new Option("\tImpose a frequency limit for superParents\n" + "\t(default is 1)", "F", 1,"-F <int>")); newVector.addElement( new Option("\tUse m-estimate instead of laplace correction\n", "M", 0,"-M")); newVector.addElement( new Option("\tSpecify a weight to use with m-estimate\n" + "\t(default is 1)", "W", 1,"-W <int>")); return newVector.elements(); } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -D * Output debugging information * </pre> * * <pre> -F <int> * Impose a frequency limit for superParents * (default is 1)</pre> * * <pre> -M * Use m-estimate instead of laplace correction * </pre> * * <pre> -W <int> * Specify a weight to use with m-estimate * (default is 1)</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { m_Debug = Utils.getFlag('D', options); String Freq = Utils.getOption('F', options); if (Freq.length() != 0) m_Limit = Integer.parseInt(Freq); else m_Limit = 1; m_MEstimates = Utils.getFlag('M', options); String weight = Utils.getOption('W', options); if (weight.length() != 0) { if (!m_MEstimates) throw new Exception("Can't use Laplace AND m-estimate weight. Choose one."); m_Weight = Integer.parseInt(weight); } else { if (m_MEstimates) m_Weight = 1; } Utils.checkForRemainingOptions(options); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String [] getOptions() { Vector result = new Vector(); if (m_Debug) result.add("-D"); result.add("-F"); result.add("" + m_Limit); if (m_MEstimates) { result.add("-M"); result.add("-W"); result.add("" + m_Weight); } return (String[]) result.toArray(new String[result.size()]); } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String setWeightTipText() { return "Set the weight for m-estimate."; } /** * Sets the weight for m-estimate * * @param w the weight */ public void setWeight(int w) { if (!getUseMEstimates()) { System.out.println( "Weight is only used in conjunction with m-estimate - ignored!"); } else { if (w > 0) m_Weight = w; else System.out.println("Weight must be greater than 0!"); } } /** * Gets the weight used in m-estimate * * @return the frequency limit */ public int getWeight() { return m_Weight; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String useMEstimatesTipText() { return "Use m-estimate instead of laplace correction."; } /** * Gets if m-estimaces is being used. * * @return Value of m_MEstimates. */ public boolean getUseMEstimates() { return m_MEstimates; } /** * Sets if m-estimates is to be used. * * @param value Value to assign to m_MEstimates. */ public void setUseMEstimates(boolean value) { m_MEstimates = value; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String frequencyLimitTipText() { return "Attributes with a frequency in the train set below " + "this value aren't used as parents."; } /** * Sets the frequency limit * * @param f the frequency limit */ public void setFrequencyLimit(int f) { m_Limit = f; } /** * Gets the frequency limit. * * @return the frequency limit */ public int getFrequencyLimit() { return m_Limit; } /** * Returns a description of the classifier. * * @return a description of the classifier as a string. */ public String toString() { StringBuffer text = new StringBuffer(); text.append("The AODE Classifier"); if (m_Instances == null) { text.append(": No model built yet."); } else { try { for (int i = 0; i < m_NumClasses; i++) { // print to string, the prior probabilities of class values text.append("\nClass " + m_Instances.classAttribute().value(i) + ": Prior probability = " + Utils. doubleToString(((m_ClassCounts[i] + 1) /(m_SumInstances + m_NumClasses)), 4, 2)+"\n\n"); } text.append("Dataset: " + m_Instances.relationName() + "\n" + "Instances: " + m_NumInstances + "\n" + "Attributes: " + m_NumAttributes + "\n" + "Frequency limit for superParents: " + m_Limit + "\n"); text.append("Correction: "); if (!m_MEstimates) text.append("laplace\n"); else text.append("m-estimate (m=" + m_Weight + ")\n"); } catch (Exception ex) { text.append(ex.getMessage()); } } return text.toString(); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { runClassifier(new AODE(), argv); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -