📄 bifreader.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * BIFReader.java * Copyright (C) 2003 Remco Bouckaert * */package weka.classifiers.bayes.net;import weka.classifiers.bayes.BayesNet;import weka.classifiers.bayes.net.estimate.DiscreteEstimatorBayes;import weka.core.FastVector;import weka.core.Instances;import weka.core.TechnicalInformation;import weka.core.TechnicalInformation.Type;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformationHandler;import weka.estimators.Estimator;import java.io.File;import java.util.StringTokenizer;import javax.xml.parsers.DocumentBuilderFactory;import org.w3c.dom.CharacterData;import org.w3c.dom.Document;import org.w3c.dom.Element;import org.w3c.dom.Node;import org.w3c.dom.NodeList;/** <!-- globalinfo-start --> * Builds a description of a Bayes Net classifier stored in XML BIF 0.3 format.<br/> * <br/> * For more details on XML BIF see:<br/> * <br/> * Fabio Cozman, Marek Druzdzel, Daniel Garcia (1998). XML BIF version 0.3. URL http://www-2.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @misc{Cozman1998, * author = {Fabio Cozman and Marek Druzdzel and Daniel Garcia}, * title = {XML BIF version 0.3}, * year = {1998}, * URL = {http://www-2.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -D * Do not use ADTree data structure * </pre> * * <pre> -B <BIF file> * BIF file to compare with * </pre> * * <pre> -Q weka.classifiers.bayes.net.search.SearchAlgorithm * Search algorithm * </pre> * * <pre> -E weka.classifiers.bayes.net.estimate.SimpleEstimator * Estimator algorithm * </pre> * <!-- options-end --> * * @author Remco Bouckaert (rrb@xm.co.nz) * @version $Revision: 1.10 $ */public class BIFReader extends BayesNet implements TechnicalInformationHandler { private int [] m_nPositionX; private int [] m_nPositionY; private int [] m_order; /** for serialization */ static final long serialVersionUID = -8358864680379881429L; /** * This will return a string describing the classifier. * @return The string. */ public String globalInfo() { return "Builds a description of a Bayes Net classifier stored in XML " + "BIF 0.3 format.\n\n" + "For more details on XML BIF see:\n\n" + getTechnicalInformation().toString(); } /** processFile reads a BIFXML file and initializes a Bayes Net * @param sFile name of the file to parse * @return the BIFReader * @throws Exception if processing fails */ public BIFReader processFile(String sFile) throws Exception { m_sFile = sFile; DocumentBuilderFactory factory = DocumentBuilderFactory.newInstance(); factory.setValidating(true); Document doc = factory.newDocumentBuilder().parse(new File(sFile)); doc.normalize(); buildInstances(doc, sFile); buildStructure(doc); return this; } // processFile /** the current filename */ String m_sFile; /** * returns the current filename * * @return the current filename */ public String getFileName() { return m_sFile; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.MISC); result.setValue(Field.AUTHOR, "Fabio Cozman and Marek Druzdzel and Daniel Garcia"); result.setValue(Field.YEAR, "1998"); result.setValue(Field.TITLE, "XML BIF version 0.3"); result.setValue(Field.URL, "http://www-2.cs.cmu.edu/~fgcozman/Research/InterchangeFormat/"); return result; } /** buildStructure parses the BIF document in the DOM tree contained * in the doc parameter and specifies the the network structure and * probability tables. * It assumes that buildInstances has been called before * @param doc DOM document containing BIF document in DOM tree * @throws Exception if building of structure fails */ void buildStructure(Document doc) throws Exception { // Get the name of the network // initialize conditional distribution tables m_Distributions = new Estimator[m_Instances.numAttributes()][]; for (int iNode = 0; iNode < m_Instances.numAttributes(); iNode++) { // find definition that goes with this node String sName = m_Instances.attribute(iNode).name(); Element definition = getDefinition(doc, sName);/* if (nodelist.getLength() == 0) { throw new Exception("No definition found for node " + sName); } if (nodelist.getLength() > 1) { System.err.println("More than one definition found for node " + sName + ". Using first definition."); } Element definition = (Element) nodelist.item(0);*/ // get the parents for this node // resolve structure FastVector nodelist = getParentNodes(definition); for (int iParent = 0; iParent < nodelist.size(); iParent++) { Node parentName = ((Node) nodelist.elementAt(iParent)).getFirstChild(); String sParentName = ((CharacterData) (parentName)).getData(); int nParent = getNode(sParentName); m_ParentSets[iNode].addParent(nParent, m_Instances); } // resolve conditional probability table int nCardinality = m_ParentSets[iNode].getCardinalityOfParents(); int nValues = m_Instances.attribute(iNode).numValues(); m_Distributions[iNode] = new Estimator[nCardinality]; for (int i = 0; i < nCardinality; i++) { m_Distributions[iNode][i] = new DiscreteEstimatorBayes(nValues, 0.0f); }/* StringBuffer sTable = new StringBuffer(); for (int iText = 0; iText < nodelist.getLength(); iText++) { sTable.append(((CharacterData) (nodelist.item(iText))).getData()); sTable.append(' '); } StringTokenizer st = new StringTokenizer(sTable.toString());*/ String sTable = getTable(definition); StringTokenizer st = new StringTokenizer(sTable.toString()); for (int i = 0; i < nCardinality; i++) { DiscreteEstimatorBayes d = (DiscreteEstimatorBayes) m_Distributions[iNode][i]; for (int iValue = 0; iValue < nValues; iValue++) { String sWeight = st.nextToken(); d.addValue(iValue, new Double(sWeight).doubleValue()); } } } } // buildStructure /** synchronizes the node ordering of this Bayes network with * those in the other network (if possible). * @param other Bayes network to synchronize with * @throws Exception if nr of attributes differs or not all of the variables have the same name. */ public void Sync(BayesNet other) throws Exception { int nAtts = m_Instances.numAttributes(); if (nAtts != other.m_Instances.numAttributes()) { throw new Exception ("Cannot synchronize networks: different number of attributes."); } m_order = new int[nAtts]; for (int iNode = 0; iNode < nAtts; iNode++) { String sName = other.getNodeName(iNode); m_order[getNode(sName)] = iNode; } } // Sync /** getNode finds the index of the node with name sNodeName * and throws an exception if no such node can be found. * @param sNodeName name of the node to get the index from * @return index of the node with name sNodeName * @throws Exception if node cannot be found */ public int getNode(String sNodeName) throws Exception { int iNode = 0; while (iNode < m_Instances.numAttributes()) { if (m_Instances.attribute(iNode).name().equals(sNodeName)) { return iNode; } iNode++; } throw new Exception("Could not find node [[" + sNodeName + "]]"); } // getNode /** * Returns all TEXT children of the given node in one string. Between * the node values new lines are inserted. * * @param node the node to return the content for * @return the content of the node */ public String getContent(Element node) { NodeList list; Node item; int i; String result; result = ""; list = node.getChildNodes(); for (i = 0; i < list.getLength(); i++) { item = list.item(i); if (item.getNodeType() == Node.TEXT_NODE) result += "\n" + item.getNodeValue(); } return result; } /** buildInstances parses the BIF document and creates a Bayes Net with its * nodes specified, but leaves the network structure and probability tables empty. * @param doc DOM document containing BIF document in DOM tree * @param sName default name to give to the Bayes Net. Will be overridden if specified in the BIF document. * @throws Exception if building fails */ void buildInstances(Document doc, String sName) throws Exception { NodeList nodelist; // Get the name of the network nodelist = selectAllNames(doc); if (nodelist.getLength() > 0) { sName = ((CharacterData) (nodelist.item(0).getFirstChild())).getData(); } // Process variables nodelist = selectAllVariables(doc); int nNodes = nodelist.getLength(); // initialize structure FastVector attInfo = new FastVector(nNodes); // Initialize m_nPositionX = new int[nodelist.getLength()]; m_nPositionY = new int[nodelist.getLength()];
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -