⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 naivebayes.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
📖 第 1 页 / 共 2 页
字号:
      attIndex++;    }    // Compute counts    Enumeration enumInsts = m_Instances.enumerateInstances();    while (enumInsts.hasMoreElements()) {      Instance instance = 	(Instance) enumInsts.nextElement();      updateClassifier(instance);    }    // Save space    m_Instances = new Instances(m_Instances, 0);  }  /**   * Updates the classifier with the given instance.   *   * @param instance the new training instance to include in the model    * @exception Exception if the instance could not be incorporated in   * the model.   */  public void updateClassifier(Instance instance) throws Exception {    if (!instance.classIsMissing()) {      Enumeration enumAtts = m_Instances.enumerateAttributes();      int attIndex = 0;      while (enumAtts.hasMoreElements()) {	Attribute attribute = (Attribute) enumAtts.nextElement();	if (!instance.isMissing(attribute)) {	  m_Distributions[attIndex][(int)instance.classValue()].	    addValue(instance.value(attribute), instance.weight());	}	attIndex++;      }      m_ClassDistribution.addValue(instance.classValue(),				   instance.weight());    }  }  /**   * Calculates the class membership probabilities for the given test    * instance.   *   * @param instance the instance to be classified   * @return predicted class probability distribution   * @exception Exception if there is a problem generating the prediction   */  public double [] distributionForInstance(Instance instance)   throws Exception {         if (m_UseDiscretization) {      m_Disc.input(instance);      instance = m_Disc.output();    }    double [] probs = new double[m_NumClasses];    for (int j = 0; j < m_NumClasses; j++) {      probs[j] = m_ClassDistribution.getProbability(j);    }    Enumeration enumAtts = instance.enumerateAttributes();    int attIndex = 0;    while (enumAtts.hasMoreElements()) {      Attribute attribute = (Attribute) enumAtts.nextElement();      if (!instance.isMissing(attribute)) {	double temp, max = 0;	for (int j = 0; j < m_NumClasses; j++) {	  temp = Math.max(1e-75, m_Distributions[attIndex][j].	  getProbability(instance.value(attribute)));	  probs[j] *= temp;	  if (probs[j] > max) {	    max = probs[j];	  }	  if (Double.isNaN(probs[j])) {	    throw new Exception("NaN returned from estimator for attribute "				+ attribute.name() + ":\n"				+ m_Distributions[attIndex][j].toString());	  }	}	if ((max > 0) && (max < 1e-75)) { // Danger of probability underflow	  for (int j = 0; j < m_NumClasses; j++) {	    probs[j] *= 1e75;	  }	}      }      attIndex++;    }    // Display probabilities    Utils.normalize(probs);    return probs;  }  /**   * Returns an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector newVector = new Vector(2);    newVector.addElement(    new Option("\tUse kernel density estimator rather than normal\n"	       +"\tdistribution for numeric attributes",	       "K", 0,"-K"));    newVector.addElement(    new Option("\tUse supervised discretization to process numeric attributes\n",	       "D", 0,"-D"));    return newVector.elements();  }  /**   * Parses a given list of options. <p/>   *   <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -K   *  Use kernel density estimator rather than normal   *  distribution for numeric attributes</pre>   *    * <pre> -D   *  Use supervised discretization to process numeric attributes   * </pre>   *    <!-- options-end -->   *   * @param options the list of options as an array of strings   * @exception Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {        boolean k = Utils.getFlag('K', options);    boolean d = Utils.getFlag('D', options);    if (k && d) {      throw new IllegalArgumentException("Can't use both kernel density " +					 "estimation and discretization!");    }    setUseSupervisedDiscretization(d);    setUseKernelEstimator(k);    Utils.checkForRemainingOptions(options);  }  /**   * Gets the current settings of the classifier.   *   * @return an array of strings suitable for passing to setOptions   */  public String [] getOptions() {    String [] options = new String [2];    int current = 0;    if (m_UseKernelEstimator) {      options[current++] = "-K";    }    if (m_UseDiscretization) {      options[current++] = "-D";    }    while (current < options.length) {      options[current++] = "";    }    return options;  }  /**   * Returns a description of the classifier.   *   * @return a description of the classifier as a string.   */  public String toString() {        StringBuffer text = new StringBuffer();    text.append("Naive Bayes Classifier");    if (m_Instances == null) {      text.append(": No model built yet.");    } else {      try {	for (int i = 0; i < m_Distributions[0].length; i++) {	  text.append("\n\nClass " + m_Instances.classAttribute().value(i) +		      ": Prior probability = " + Utils.		      doubleToString(m_ClassDistribution.getProbability(i),				     4, 2) + "\n\n");	  Enumeration enumAtts = m_Instances.enumerateAttributes();	  int attIndex = 0;	  while (enumAtts.hasMoreElements()) {	    Attribute attribute = (Attribute) enumAtts.nextElement();	    text.append(attribute.name() + ":  " 			+ m_Distributions[attIndex][i]);	    attIndex++;	  }	}      } catch (Exception ex) {	text.append(ex.getMessage());      }    }    return text.toString();  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String useKernelEstimatorTipText() {    return "Use a kernel estimator for numeric attributes rather than a "      +"normal distribution.";  }  /**   * Gets if kernel estimator is being used.   *   * @return Value of m_UseKernelEstimatory.   */  public boolean getUseKernelEstimator() {        return m_UseKernelEstimator;  }    /**   * Sets if kernel estimator is to be used.   *   * @param v  Value to assign to m_UseKernelEstimatory.   */  public void setUseKernelEstimator(boolean v) {        m_UseKernelEstimator = v;    if (v) {      setUseSupervisedDiscretization(false);    }  }    /**   * Returns the tip text for this property   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String useSupervisedDiscretizationTipText() {    return "Use supervised discretization to convert numeric attributes to nominal "      +"ones.";  }  /**   * Get whether supervised discretization is to be used.   *   * @return true if supervised discretization is to be used.   */  public boolean getUseSupervisedDiscretization() {        return m_UseDiscretization;  }    /**   * Set whether supervised discretization is to be used.   *   * @param newblah true if supervised discretization is to be used.   */  public void setUseSupervisedDiscretization(boolean newblah) {        m_UseDiscretization = newblah;    if (newblah) {      setUseKernelEstimator(false);    }  }    /**   * Main method for testing this class.   *   * @param argv the options   */  public static void main(String [] argv) {    runClassifier(new NaiveBayes(), argv);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -