📄 naivebayesmultinomial.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * NaiveBayesMultinomial1.java * Copyright (C) 2003 Andrew Golightly */package weka.classifiers.bayes;import weka.classifiers.Classifier;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.WeightedInstancesHandler;import weka.core.Capabilities.Capability;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;/** <!-- globalinfo-start --> * Class for building and using a multinomial Naive Bayes classifier. For more information see,<br/> * <br/> * Andrew Mccallum, Kamal Nigam: A Comparison of Event Models for Naive Bayes Text Classification. In: AAAI-98 Workshop on 'Learning for Text Categorization', 1998.<br/> * <br/> * The core equation for this classifier:<br/> * <br/> * P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)<br/> * <br/> * where Ci is class i and D is a document. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @inproceedings{Mccallum1998, * author = {Andrew Mccallum and Kamal Nigam}, * booktitle = {AAAI-98 Workshop on 'Learning for Text Categorization'}, * title = {A Comparison of Event Models for Naive Bayes Text Classification}, * year = {1998} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -D * If set, classifier is run in debug mode and * may output additional info to the console</pre> * <!-- options-end --> * * @author Andrew Golightly (acg4@cs.waikato.ac.nz) * @author Bernhard Pfahringer (bernhard@cs.waikato.ac.nz) * @version $Revision: 1.13 $ */public class NaiveBayesMultinomial extends Classifier implements WeightedInstancesHandler,TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 5932177440181257085L; /** * probability that a word (w) exists in a class (H) (i.e. Pr[w|H]) * The matrix is in the this format: probOfWordGivenClass[class][wordAttribute] * NOTE: the values are actually the log of Pr[w|H] */ private double[][] probOfWordGivenClass; /** the probability of a class (i.e. Pr[H]) */ private double[] probOfClass; /** number of unique words */ private int numAttributes; /** number of class values */ private int numClasses; /** cache lnFactorial computations */ private double[] lnFactorialCache = new double[]{0.0,0.0}; /** copy of header information for use in toString method */ Instances headerInfo; /** * Returns a string describing this classifier * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for building and using a multinomial Naive Bayes classifier. " + "For more information see,\n\n" + getTechnicalInformation().toString() + "\n\n" + "The core equation for this classifier:\n\n" + "P[Ci|D] = (P[D|Ci] x P[Ci]) / P[D] (Bayes rule)\n\n" + "where Ci is class i and D is a document."; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Andrew Mccallum and Kamal Nigam"); result.setValue(Field.YEAR, "1998"); result.setValue(Field.TITLE, "A Comparison of Event Models for Naive Bayes Text Classification"); result.setValue(Field.BOOKTITLE, "AAAI-98 Workshop on 'Learning for Text Categorization'"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // attributes result.enable(Capability.NUMERIC_ATTRIBUTES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @exception Exception if the classifier has not been generated successfully */ public void buildClassifier(Instances instances) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class instances = new Instances(instances); instances.deleteWithMissingClass(); headerInfo = new Instances(instances, 0); numClasses = instances.numClasses(); numAttributes = instances.numAttributes(); probOfWordGivenClass = new double[numClasses][]; /* initialising the matrix of word counts NOTE: Laplace estimator introduced in case a word that does not appear for a class in the training set does so for the test set */ for(int c = 0; c<numClasses; c++) { probOfWordGivenClass[c] = new double[numAttributes]; for(int att = 0; att<numAttributes; att++) { probOfWordGivenClass[c][att] = 1; } } //enumerate through the instances Instance instance; int classIndex; double numOccurences; double[] docsPerClass = new double[numClasses]; double[] wordsPerClass = new double[numClasses]; java.util.Enumeration enumInsts = instances.enumerateInstances(); while (enumInsts.hasMoreElements()) { instance = (Instance) enumInsts.nextElement(); classIndex = (int)instance.value(instance.classIndex()); docsPerClass[classIndex] += instance.weight(); for(int a = 0; a<instance.numValues(); a++) if(instance.index(a) != instance.classIndex()) { if(!instance.isMissing(a)) { numOccurences = instance.valueSparse(a) * instance.weight(); if(numOccurences < 0) throw new Exception("Numeric attribute values must all be greater or equal to zero."); wordsPerClass[classIndex] += numOccurences; probOfWordGivenClass[classIndex][instance.index(a)] += numOccurences; } } } /* normalising probOfWordGivenClass values and saving each value as the log of each value */ for(int c = 0; c<numClasses; c++) for(int v = 0; v<numAttributes; v++) probOfWordGivenClass[c][v] = Math.log(probOfWordGivenClass[c][v] / (wordsPerClass[c] + numAttributes - 1)); /* calculating Pr(H) NOTE: Laplace estimator introduced in case a class does not get mentioned in the set of training instances */ final double numDocs = instances.sumOfWeights() + numClasses; probOfClass = new double[numClasses]; for(int h=0; h<numClasses; h++) probOfClass[h] = (double)(docsPerClass[h] + 1)/numDocs; } /** * Calculates the class membership probabilities for the given test * instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @exception Exception if there is a problem generating the prediction */ public double [] distributionForInstance(Instance instance) throws Exception { double[] probOfClassGivenDoc = new double[numClasses]; //calculate the array of log(Pr[D|C]) double[] logDocGivenClass = new double[numClasses]; for(int h = 0; h<numClasses; h++) logDocGivenClass[h] = probOfDocGivenClass(instance, h); double max = logDocGivenClass[Utils.maxIndex(logDocGivenClass)]; double probOfDoc = 0.0; for(int i = 0; i<numClasses; i++) { probOfClassGivenDoc[i] = Math.exp(logDocGivenClass[i] - max) * probOfClass[i]; probOfDoc += probOfClassGivenDoc[i]; } Utils.normalize(probOfClassGivenDoc,probOfDoc); return probOfClassGivenDoc; } /** * log(N!) + (for all the words)(log(Pi^ni) - log(ni!)) * * where * N is the total number of words * Pi is the probability of obtaining word i * ni is the number of times the word at index i occurs in the document * * @param inst The instance to be classified * @param classIndex The index of the class we are calculating the probability with respect to * * @return The log of the probability of the document occuring given the class */ private double probOfDocGivenClass(Instance inst, int classIndex) { double answer = 0; //double totalWords = 0; //no need as we are not calculating the factorial at all. double freqOfWordInDoc; //should be double for(int i = 0; i<inst.numValues(); i++) if(inst.index(i) != inst.classIndex()) { freqOfWordInDoc = inst.valueSparse(i); //totalWords += freqOfWordInDoc; answer += (freqOfWordInDoc * probOfWordGivenClass[classIndex][inst.index(i)] ); //- lnFactorial(freqOfWordInDoc)); } //answer += lnFactorial(totalWords);//The factorial terms don't make //any difference to the classifier's //accuracy, so not needed. return answer; } /** * Fast computation of ln(n!) for non-negative ints * * negative ints are passed on to the general gamma-function * based version in weka.core.SpecialFunctions * * if the current n value is higher than any previous one, * the cache is extended and filled to cover it * * the common case is reduced to a simple array lookup * * @param n the integer * @return ln(n!) */ public double lnFactorial(int n) { if (n < 0) return weka.core.SpecialFunctions.lnFactorial(n); if (lnFactorialCache.length <= n) { double[] tmp = new double[n+1]; System.arraycopy(lnFactorialCache,0,tmp,0,lnFactorialCache.length); for(int i = lnFactorialCache.length; i < tmp.length; i++) tmp[i] = tmp[i-1] + Math.log(i); lnFactorialCache = tmp; } return lnFactorialCache[n]; } /** * Returns a string representation of the classifier. * * @return a string representation of the classifier */ public String toString() { StringBuffer result = new StringBuffer("The independent probability of a class\n--------------------------------------\n"); for(int c = 0; c<numClasses; c++) result.append(headerInfo.classAttribute().value(c)).append("\t").append(Double.toString(probOfClass[c])).append("\n"); result.append("\nThe probability of a word given the class\n-----------------------------------------\n\t"); for(int c = 0; c<numClasses; c++) result.append(headerInfo.classAttribute().value(c)).append("\t"); result.append("\n"); for(int w = 0; w<numAttributes; w++) { result.append(headerInfo.attribute(w).name()).append("\t"); for(int c = 0; c<numClasses; c++) result.append(Double.toString(Math.exp(probOfWordGivenClass[c][w]))).append("\t"); result.append("\n"); } return result.toString(); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { runClassifier(new NaiveBayesMultinomial(), argv); }}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -