📄 complementnaivebayes.java
字号:
return "Class for building and using a Complement class Naive Bayes "+ "classifier.\n\nFor more information see, \n\n"+ getTechnicalInformation().toString() + "\n\n" + "P.S.: TF, IDF and length normalization transforms, as "+ "described in the paper, can be performed through "+ "weka.filters.unsupervised.StringToWordVector."; } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "Jason D. Rennie and Lawrence Shih and Jaime Teevan and David R. Karger"); result.setValue(Field.TITLE, "Tackling the Poor Assumptions of Naive Bayes Text Classifiers"); result.setValue(Field.BOOKTITLE, "ICML"); result.setValue(Field.YEAR, "2003"); result.setValue(Field.PAGES, "616-623"); result.setValue(Field.PUBLISHER, "AAAI Press"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // attributes result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); return result; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @throws Exception if the classifier has not been built successfully */ public void buildClassifier(Instances instances) throws Exception { // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class instances = new Instances(instances); instances.deleteWithMissingClass(); numClasses = instances.numClasses(); int numAttributes = instances.numAttributes(); header = new Instances(instances, 0); double [][] ocrnceOfWordInClass = new double[numClasses][numAttributes]; wordWeights = new double[numClasses][numAttributes]; //double [] docsPerClass = new double[numClasses]; double[] wordsPerClass = new double[numClasses]; double totalWordOccurrences = 0; double sumOfSmoothingParams = (numAttributes-1)*smoothingParameter; int classIndex = instances.instance(0).classIndex(); Instance instance; int docClass; double numOccurrences; java.util.Enumeration enumInsts = instances.enumerateInstances(); while (enumInsts.hasMoreElements()) { instance = (Instance) enumInsts.nextElement(); docClass = (int)instance.value(classIndex); //docsPerClass[docClass] += instance.weight(); for(int a = 0; a<instance.numValues(); a++) if(instance.index(a) != instance.classIndex()) { if(!instance.isMissing(a)) { numOccurrences = instance.valueSparse(a) * instance.weight(); if(numOccurrences < 0) throw new Exception("Numeric attribute"+ " values must all be greater"+ " or equal to zero."); totalWordOccurrences += numOccurrences; wordsPerClass[docClass] += numOccurrences; ocrnceOfWordInClass[docClass] [instance.index(a)] += numOccurrences; //For the time being wordweights[0][i] //will hold the total occurrence of word // i over all classes wordWeights[0] [instance.index(a)] += numOccurrences; } } } //Calculating the complement class probability for all classes except 0 for(int c=1; c<numClasses; c++) { //total occurrence of words in classes other than c double totalWordOcrnces = totalWordOccurrences - wordsPerClass[c]; for(int w=0; w<numAttributes; w++) { if(w != classIndex ) { //occurrence of w in classes other that c double ocrncesOfWord = wordWeights[0][w] - ocrnceOfWordInClass[c][w]; wordWeights[c][w] = Math.log((ocrncesOfWord+smoothingParameter) / (totalWordOcrnces+sumOfSmoothingParams)); } } } //Now calculating the complement class probability for class 0 for(int w=0; w<numAttributes; w++) { if(w != classIndex) { //occurrence of w in classes other that c double ocrncesOfWord = wordWeights[0][w] - ocrnceOfWordInClass[0][w]; //total occurrence of words in classes other than c double totalWordOcrnces = totalWordOccurrences - wordsPerClass[0]; wordWeights[0][w] = Math.log((ocrncesOfWord+smoothingParameter) / (totalWordOcrnces+sumOfSmoothingParams)); } } //Normalizing weights if(m_normalizeWordWeights==true) for(int c=0; c<numClasses; c++) { double sum=0; for(int w=0; w<numAttributes; w++) { if(w!=classIndex) sum += Math.abs(wordWeights[c][w]); } for(int w=0; w<numAttributes; w++) { if(w!=classIndex) { wordWeights[c][w] = wordWeights[c][w]/sum; } } } } /** * Classifies a given instance. <p> * * The classification rule is: <br> * MinC(forAllWords(ti*Wci)) <br> * where <br> * ti is the frequency of word i in the given instance <br> * Wci is the weight of word i in Class c. <p> * * For more information see section 4.4 of the paper mentioned above * in the classifiers description. * * @param instance the instance to classify * @return the index of the class the instance is most likely to belong. * @throws Exception if the classifier has not been built yet. */ public double classifyInstance(Instance instance) throws Exception { if(wordWeights==null) throw new Exception("Error. The classifier has not been built "+ "properly."); double [] valueForClass = new double[numClasses]; double sumOfClassValues=0; for(int c=0; c<numClasses; c++) { double sumOfWordValues=0; for(int w=0; w<instance.numValues(); w++) { if(instance.index(w)!=instance.classIndex()) { double freqOfWordInDoc = instance.valueSparse(w); sumOfWordValues += freqOfWordInDoc * wordWeights[c][instance.index(w)]; } } //valueForClass[c] = Math.log(probOfClass[c]) - sumOfWordValues; valueForClass[c] = sumOfWordValues; sumOfClassValues += valueForClass[c]; } int minidx=0; for(int i=0; i<numClasses; i++) if(valueForClass[i]<valueForClass[minidx]) minidx = i; return minidx; } /** * Prints out the internal model built by the classifier. In this case * it prints out the word weights calculated when building the classifier. */ public String toString() { if(wordWeights==null) { return "The classifier hasn't been built yet."; } int numAttributes = header.numAttributes(); StringBuffer result = new StringBuffer("The word weights for each class are: \n"+ "------------------------------------\n\t"); for(int c = 0; c<numClasses; c++) result.append(header.classAttribute().value(c)).append("\t"); result.append("\n"); for(int w = 0; w<numAttributes; w++) { result.append(header.attribute(w).name()).append("\t"); for(int c = 0; c<numClasses; c++) result.append(Double.toString(wordWeights[c][w])).append("\t"); result.append("\n"); } return result.toString(); } /** * Main method for testing this class. * * @param argv the options */ public static void main(String [] argv) { runClassifier(new ComplementNaiveBayes(), argv); } }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -