📄 complementnaivebayes.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * ComplementNaiveBayes.java * Copyright (C) 2003 Ashraf M. Kibriya */package weka.classifiers.bayes;import weka.classifiers.Classifier;import weka.core.Capabilities;import weka.core.FastVector;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.OptionHandler;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.WeightedInstancesHandler;import weka.core.Capabilities.Capability;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;/** <!-- globalinfo-start --> * Class for building and using a Complement class Naive Bayes classifier.<br/> * <br/> * For more information see, <br/> * <br/> * Jason D. Rennie, Lawrence Shih, Jaime Teevan, David R. Karger: Tackling the Poor Assumptions of Naive Bayes Text Classifiers. In: ICML, 616-623, 2003.<br/> * <br/> * P.S.: TF, IDF and length normalization transforms, as described in the paper, can be performed through weka.filters.unsupervised.StringToWordVector. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @inproceedings{Rennie2003, * author = {Jason D. Rennie and Lawrence Shih and Jaime Teevan and David R. Karger}, * booktitle = {ICML}, * pages = {616-623}, * publisher = {AAAI Press}, * title = {Tackling the Poor Assumptions of Naive Bayes Text Classifiers}, * year = {2003} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -N * Normalize the word weights for each class * </pre> * * <pre> -S * Smoothing value to avoid zero WordGivenClass probabilities (default=1.0). * </pre> * <!-- options-end --> * * @author Ashraf M. Kibriya (amk14@cs.waikato.ac.nz) * @version $Revision: 1.7 $ */public class ComplementNaiveBayes extends Classifier implements OptionHandler, WeightedInstancesHandler, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 7246302925903086397L; /** Weight of words for each class. The weight is actually the log of the probability of a word (w) given a class (c) (i.e. log(Pr[w|c])). The format of the matrix is: wordWeights[class][wordAttribute] */ private double[][] wordWeights; /** Holds the smoothing value to avoid word probabilities of zero.<br> P.S.: According to the paper this is the Alpha i parameter */ private double smoothingParameter = 1.0; /** True if the words weights are to be normalized */ private boolean m_normalizeWordWeights = false; /** Holds the number of Class values present in the set of specified instances */ private int numClasses; /** The instances header that'll be used in toString */ private Instances header; /** * Returns an enumeration describing the available options. * * @return an enumeration of all the available options. */ public java.util.Enumeration listOptions() { FastVector newVector = new FastVector(2); newVector.addElement( new Option("\tNormalize the word weights for each class\n", "N", 0,"-N")); newVector.addElement( new Option("\tSmoothing value to avoid zero WordGivenClass"+ " probabilities (default=1.0).\n", "S", 1,"-S")); return newVector.elements(); } /** * Gets the current settings of the classifier. * * @return an array of strings suitable for passing to setOptions */ public String[] getOptions() { String options[] = new String[4]; int current=0; if(getNormalizeWordWeights()) options[current++] = "-N"; options[current++] = "-S"; options[current++] = Double.toString(smoothingParameter); while (current < options.length) { options[current++] = ""; } return options; } /** * Parses a given list of options. <p/> * <!-- options-start --> * Valid options are: <p/> * * <pre> -N * Normalize the word weights for each class * </pre> * * <pre> -S * Smoothing value to avoid zero WordGivenClass probabilities (default=1.0). * </pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { setNormalizeWordWeights(Utils.getFlag('N', options)); String val = Utils.getOption('S', options); if(val.length()!=0) setSmoothingParameter(Double.parseDouble(val)); else setSmoothingParameter(1.0); } /** * Returns true if the word weights for each class are to be normalized * * @return true if the word weights are normalized */ public boolean getNormalizeWordWeights() { return m_normalizeWordWeights; } /** * Sets whether if the word weights for each class should be normalized * * @param doNormalize whether the word weights are to be normalized */ public void setNormalizeWordWeights(boolean doNormalize) { m_normalizeWordWeights = doNormalize; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String normalizeWordWeightsTipText() { return "Normalizes the word weights for each class."; } /** * Gets the smoothing value to be used to avoid zero WordGivenClass * probabilities. * * @return the smoothing value */ public double getSmoothingParameter() { return smoothingParameter; } /** * Sets the smoothing value used to avoid zero WordGivenClass probabilities * * @param val the new smooting value */ public void setSmoothingParameter(double val) { smoothingParameter = val; } /** * Returns the tip text for this property * @return tip text for this property suitable for * displaying in the explorer/experimenter gui */ public String smoothingParameterTipText() { return "Sets the smoothing parameter to avoid zero WordGivenClass "+ "probabilities (default=1.0)."; } /** * Returns a string describing this classifier * @return a description of the classifier suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() {
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -