⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 waode.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. *  * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the * GNU General Public License for more details. *  * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    WAODE.java *    Copyright 2006 Liangxiao Jiang */package weka.classifiers.bayes;import weka.classifiers.Classifier;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.Capabilities.Capability;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * WAODE contructs the model called Weightily Averaged One-Dependence Estimators.<br/> * <br/> * For more information, see<br/> * <br/> * L. Jiang, H. Zhang: Weightily Averaged One-Dependence Estimators. In: Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006, 970-974, 2006. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * &#64;inproceedings{Jiang2006, *    author = {L. Jiang and H. Zhang}, *    booktitle = {Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006}, *    pages = {970-974}, *    series = {LNAI}, *    title = {Weightily Averaged One-Dependence Estimators}, *    volume = {4099}, *    year = {2006} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> *  * <pre> -D *  If set, classifier is run in debug mode and *  may output additional info to the console</pre> *  * <pre> -I *  Whether to print some more internals. *  (default: no)</pre> *  <!-- options-end --> * * @author  Liangxiao Jiang (ljiang@cug.edu.cn) * @author  H. Zhang (hzhang@unb.ca) * @version $Revision: 1.1 $ */public class WAODE   extends Classifier  implements TechnicalInformationHandler {    /** for serialization */  private static final long serialVersionUID = 2170978824284697882L;  /** The number of each class value occurs in the dataset */  private double[] m_ClassCounts;    /** The number of each attribute value occurs in the dataset */  private double[] m_AttCounts;    /** The number of two attributes values occurs in the dataset */  private double[][] m_AttAttCounts;    /** The number of class and two attributes values occurs in the dataset */  private double[][][] m_ClassAttAttCounts;    /** The number of values for each attribute in the dataset */  private int[] m_NumAttValues;    /** The number of values for all attributes in the dataset */  private int m_TotalAttValues;    /** The number of classes in the dataset */  private int m_NumClasses;    /** The number of attributes including class in the dataset */  private int m_NumAttributes;    /** The number of instances in the dataset */  private int m_NumInstances;    /** The index of the class attribute in the dataset */  private int m_ClassIndex;    /** The starting index of each attribute in the dataset */  private int[] m_StartAttIndex;    /** The array of mutual information between each attribute and class */  private double[] m_mutualInformation;    /** the header information of the training data */  private Instances m_Header = null;    /** whether to print more internals in the toString method   * @see #toString() */  private boolean m_Internals = false;    /**   * Returns a string describing this classifier   *    * @return 		a description of the classifier suitable for   * 			displaying in the explorer/experimenter gui   */  public String globalInfo() {    return         "WAODE contructs the model called Weightily Averaged One-Dependence "      + "Estimators.\n\n"      + "For more information, see\n\n"      + getTechnicalInformation().toString();  }  /**   * Gets an enumeration describing the available options.   *   * @return an enumeration of all the available options.   */  public Enumeration listOptions() {    Vector result = new Vector();    Enumeration enm = super.listOptions();    while (enm.hasMoreElements())      result.add(enm.nextElement());          result.addElement(new Option(	"\tWhether to print some more internals.\n"	+ "\t(default: no)",	"I", 0, "-I"));    return result.elements();  }  /**   * Parses a given list of options. <p/>   *    <!-- options-start -->   * Valid options are: <p/>   *    * <pre> -D   *  If set, classifier is run in debug mode and   *  may output additional info to the console</pre>   *    * <pre> -I   *  Whether to print some more internals.   *  (default: no)</pre>   *    <!-- options-end -->   *   * @param options the list of options as an array of strings   * @throws Exception if an option is not supported   */  public void setOptions(String[] options) throws Exception {    super.setOptions(options);    setInternals(Utils.getFlag('I', options));  }  /**   * Gets the current settings of the filter.   *   * @return an array of strings suitable for passing to setOptions   */  public String[] getOptions() {    Vector        result;    String[]      options;    int           i;    result = new Vector();    options = super.getOptions();    for (i = 0; i < options.length; i++)      result.add(options[i]);    if (getInternals())      result.add("-I");    return (String[]) result.toArray(new String[result.size()]);  }    /**   * Returns the tip text for this property   *   * @return tip text for this property suitable for   * displaying in the explorer/experimenter gui   */  public String internalsTipText() {    return "Prints more internals of the classifier.";  }  /**    * Sets whether internals about classifier are printed via toString().   *   * @param value if internals should be printed   * @see #toString()   */  public void setInternals(boolean value) {    m_Internals = value;  }  /**   * Gets whether more internals of the classifier are printed.   *   * @return true if more internals are printed   */  public boolean getInternals() {    return m_Internals;  }  /**   * Returns an instance of a TechnicalInformation object, containing    * detailed information about the technical background of this class,   * e.g., paper reference or book this class is based on.   *    * @return the technical information about this class   */  public TechnicalInformation getTechnicalInformation() {    TechnicalInformation 	result;        result = new TechnicalInformation(Type.INPROCEEDINGS);    result.setValue(Field.AUTHOR, "L. Jiang and H. Zhang");    result.setValue(Field.TITLE, "Weightily Averaged One-Dependence Estimators");    result.setValue(Field.BOOKTITLE, "Proceedings of the 9th Biennial Pacific Rim International Conference on Artificial Intelligence, PRICAI 2006");    result.setValue(Field.YEAR, "2006");    result.setValue(Field.PAGES, "970-974");    result.setValue(Field.SERIES, "LNAI");    result.setValue(Field.VOLUME, "4099");    return result;  }  /**   * Returns default capabilities of the classifier.   *   * @return      the capabilities of this classifier   */  public Capabilities getCapabilities() {    Capabilities result = super.getCapabilities();    // attributes    result.enable(Capability.NOMINAL_ATTRIBUTES);    // class    result.enable(Capability.NOMINAL_CLASS);        return result;  }    /**   * Generates the classifier.   *   * @param instances set of instances serving as training data   * @throws Exception if the classifier has not been generated successfully   */  public void buildClassifier(Instances instances) throws Exception {        // can classifier handle the data?    getCapabilities().testWithFail(instances);    // reset variable    m_NumClasses = instances.numClasses();    m_ClassIndex = instances.classIndex();    m_NumAttributes = instances.numAttributes();    m_NumInstances = instances.numInstances();    m_TotalAttValues = 0;        // allocate space for attribute reference arrays    m_StartAttIndex = new int[m_NumAttributes];    m_NumAttValues = new int[m_NumAttributes];        // set the starting index of each attribute and the number of values for    // each attribute and the total number of values for all attributes (not including class).    for (int i = 0; i < m_NumAttributes; i++) {      if (i != m_ClassIndex) {	m_StartAttIndex[i] = m_TotalAttValues;	m_NumAttValues[i] = instances.attribute(i).numValues();	m_TotalAttValues += m_NumAttValues[i];      }      else {	m_StartAttIndex[i] = -1;	m_NumAttValues[i] = m_NumClasses;      }    }        // allocate space for counts and frequencies    m_ClassCounts = new double[m_NumClasses];    m_AttCounts = new double[m_TotalAttValues];    m_AttAttCounts = new double[m_TotalAttValues][m_TotalAttValues];    m_ClassAttAttCounts = new double[m_NumClasses][m_TotalAttValues][m_TotalAttValues];    m_Header = new Instances(instances, 0);        // Calculate the counts    for (int k = 0; k < m_NumInstances; k++) {      int classVal=(int)instances.instance(k).classValue();      m_ClassCounts[classVal] ++;      int[] attIndex = new int[m_NumAttributes];      for (int i = 0; i < m_NumAttributes; i++) {	if (i == m_ClassIndex){	  attIndex[i] = -1;	}	else{	  attIndex[i] = m_StartAttIndex[i] + (int)instances.instance(k).value(i);	  m_AttCounts[attIndex[i]]++;	}      }      for (int Att1 = 0; Att1 < m_NumAttributes; Att1++) {	if (attIndex[Att1] == -1) continue;	for (int Att2 = 0; Att2 < m_NumAttributes; Att2++) {	  if ((attIndex[Att2] != -1)) {	    m_AttAttCounts[attIndex[Att1]][attIndex[Att2]] ++;	    m_ClassAttAttCounts[classVal][attIndex[Att1]][attIndex[Att2]] ++;	  }	}      }    }        //compute mutual information between each attribute and class    m_mutualInformation=new double[m_NumAttributes];    for (int att=0;att<m_NumAttributes;att++){      if (att == m_ClassIndex) continue;      m_mutualInformation[att]=mutualInfo(att);    }  }    /**   * Computes mutual information between each attribute and class attribute.   *   * @param att is the attribute   * @return the conditional mutual information between son and parent given class   */  private double mutualInfo(int att) {        double mutualInfo=0;    int attIndex=m_StartAttIndex[att];    double[] PriorsClass = new double[m_NumClasses];    double[] PriorsAttribute = new double[m_NumAttValues[att]];    double[][] PriorsClassAttribute=new double[m_NumClasses][m_NumAttValues[att]];        for (int i=0;i<m_NumClasses;i++){      PriorsClass[i]=m_ClassCounts[i]/m_NumInstances;    }        for (int j=0;j<m_NumAttValues[att];j++){      PriorsAttribute[j]=m_AttCounts[attIndex+j]/m_NumInstances;    }        for (int i=0;i<m_NumClasses;i++){      for (int j=0;j<m_NumAttValues[att];j++){	PriorsClassAttribute[i][j]=m_ClassAttAttCounts[i][attIndex+j][attIndex+j]/m_NumInstances;      }    }        for (int i=0;i<m_NumClasses;i++){      for (int j=0;j<m_NumAttValues[att];j++){	mutualInfo+=PriorsClassAttribute[i][j]*log2(PriorsClassAttribute[i][j],PriorsClass[i]*PriorsAttribute[j]);      }    }    return mutualInfo;  }    /**   * compute the logarithm whose base is 2.   *   * @param x numerator of the fraction.   * @param y denominator of the fraction.   * @return the natual logarithm of this fraction.   */  private double log2(double x,double y){        if (x < Utils.SMALL || y < Utils.SMALL)      return 0.0;    else      return Math.log(x/y)/Math.log(2);  }    /**   * Calculates the class membership probabilities for the given test instance   *   * @param instance the instance to be classified   * @return predicted class probability distribution   * @throws Exception if there is a problem generating the prediction   */  public double[] distributionForInstance(Instance instance) throws Exception {        //Definition of local variables    double[] probs = new double[m_NumClasses];    double prob;    double mutualInfoSum;        // store instance's att values in an int array    int[] attIndex = new int[m_NumAttributes];    for (int att = 0; att < m_NumAttributes; att++) {      if (att == m_ClassIndex)	attIndex[att] = -1;      else	attIndex[att] = m_StartAttIndex[att] + (int)instance.value(att);    }        // calculate probabilities for each possible class value    for (int classVal = 0; classVal < m_NumClasses; classVal++) {      probs[classVal] = 0;      prob=1;      mutualInfoSum=0.0;      for (int parent = 0; parent < m_NumAttributes; parent++) {	if (attIndex[parent]==-1) continue;	prob=(m_ClassAttAttCounts[classVal][attIndex[parent]][attIndex[parent]] + 1.0/(m_NumClasses*m_NumAttValues[parent]))/(m_NumInstances + 1.0);	for (int son = 0; son < m_NumAttributes; son++) {	  if (attIndex[son]==-1 || son == parent) continue;	  prob*=(m_ClassAttAttCounts[classVal][attIndex[parent]][attIndex[son]] + 1.0/m_NumAttValues[son])/(m_ClassAttAttCounts[classVal][attIndex[parent]][attIndex[parent]] + 1.0);	}	mutualInfoSum+=m_mutualInformation[parent];	probs[classVal]+=m_mutualInformation[parent]*prob;      }      probs[classVal]/=mutualInfoSum;    }    Utils.normalize(probs);    return probs;  }    /**   * returns a string representation of the classifier   *    * @return string representation of the classifier   */  public String toString() {    StringBuffer	result;    String		classname;    int			i;        classname = this.getClass().getName().replaceAll(".*\\.", "");    result    = new StringBuffer();    result.append(classname + "\n");    result.append(classname.replaceAll(".", "=") + "\n\n");    if (m_Header == null) {      result.append("No Model built yet.\n");    }    else {      if (getInternals()) {	result.append("Mutual information of attributes with class attribute:\n");	for (i = 0; i < m_Header.numAttributes(); i++) {	  // skip class	  if (i == m_Header.classIndex())	    continue;	  	  result.append(	      (i+1) + ". " + m_Header.attribute(i).name() + ": " 	      + Utils.doubleToString(m_mutualInformation[i], 6) + "\n");	}      }      else {	result.append("Model built successfully.\n");      }    }        return result.toString();  }    /**   * Main method for testing this class.   *   * @param argv the commandline options, use -h to list all options   */  public static void main(String[] argv) {    runClassifier(new WAODE(), argv);  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -