📄 kstar.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * KStar.java * Copyright (c) 1995-97 by Len Trigg (trigg@cs.waikato.ac.nz). * Java port to Weka by Abdelaziz Mahoui (am14@cs.waikato.ac.nz). * */package weka.classifiers.lazy;import weka.classifiers.Classifier;import weka.classifiers.UpdateableClassifier;import weka.classifiers.lazy.kstar.KStarCache;import weka.classifiers.lazy.kstar.KStarConstants;import weka.classifiers.lazy.kstar.KStarNominalAttribute;import weka.classifiers.lazy.kstar.KStarNumericAttribute;import weka.core.Attribute;import weka.core.Capabilities;import weka.core.Instance;import weka.core.Instances;import weka.core.Option;import weka.core.SelectedTag;import weka.core.Tag;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.Capabilities.Capability;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import java.util.Enumeration;import java.util.Random;import java.util.Vector;/** <!-- globalinfo-start --> * K* is an instance-based classifier, that is the class of a test instance is based upon the class of those training instances similar to it, as determined by some similarity function. It differs from other instance-based learners in that it uses an entropy-based distance function.<br/> * <br/> * For more information on K*, see<br/> * <br/> * John G. Cleary, Leonard E. Trigg: K*: An Instance-based Learner Using an Entropic Distance Measure. In: 12th International Conference on Machine Learning, 108-114, 1995. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @inproceedings{Cleary1995, * author = {John G. Cleary and Leonard E. Trigg}, * booktitle = {12th International Conference on Machine Learning}, * pages = {108-114}, * title = {K*: An Instance-based Learner Using an Entropic Distance Measure}, * year = {1995} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -B <num> * Manual blend setting (default 20%) * </pre> * * <pre> -E * Enable entropic auto-blend setting (symbolic class only) * </pre> * * <pre> -M <char> * Specify the missing value treatment mode (default a) * Valid options are: a(verage), d(elete), m(axdiff), n(ormal) * </pre> * <!-- options-end --> * * @author Len Trigg (len@reeltwo.com) * @author Abdelaziz Mahoui (am14@cs.waikato.ac.nz) * @version $Revision: 1.7 $ */public class KStar extends Classifier implements KStarConstants, UpdateableClassifier, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = 332458330800479083L; /** The training instances used for classification. */ protected Instances m_Train; /** The number of instances in the dataset */ protected int m_NumInstances; /** The number of class values */ protected int m_NumClasses; /** The number of attributes */ protected int m_NumAttributes; /** The class attribute type */ protected int m_ClassType; /** Table of random class value colomns */ protected int [][] m_RandClassCols; /** Flag turning on and off the computation of random class colomns */ protected int m_ComputeRandomCols = ON; /** Flag turning on and off the initialisation of config variables */ protected int m_InitFlag = ON; /** * A custom data structure for caching distinct attribute values * and their scale factor or stop parameter. */ protected KStarCache [] m_Cache; /** missing value treatment */ protected int m_MissingMode = M_AVERAGE; /** 0 = use specified blend, 1 = entropic blend setting */ protected int m_BlendMethod = B_SPHERE; /** default sphere of influence blend setting */ protected int m_GlobalBlend = 20; /** Define possible missing value handling methods */ public static final Tag [] TAGS_MISSING = { new Tag(M_DELETE, "Ignore the instances with missing values"), new Tag(M_MAXDIFF, "Treat missing values as maximally different"), new Tag(M_NORMAL, "Normalize over the attributes"), new Tag(M_AVERAGE, "Average column entropy curves") }; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "K* is an instance-based classifier, that is the class of a test " + "instance is based upon the class of those training instances " + "similar to it, as determined by some similarity function. It differs " + "from other instance-based learners in that it uses an entropy-based " + "distance function.\n\n" + "For more information on K*, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.INPROCEEDINGS); result.setValue(Field.AUTHOR, "John G. Cleary and Leonard E. Trigg"); result.setValue(Field.TITLE, "K*: An Instance-based Learner Using an Entropic Distance Measure"); result.setValue(Field.BOOKTITLE, "12th International Conference on Machine Learning"); result.setValue(Field.YEAR, "1995"); result.setValue(Field.PAGES, "108-114"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result = super.getCapabilities(); // attributes result.enable(Capability.NOMINAL_ATTRIBUTES); result.enable(Capability.NUMERIC_ATTRIBUTES); result.enable(Capability.DATE_ATTRIBUTES); result.enable(Capability.MISSING_VALUES); // class result.enable(Capability.NOMINAL_CLASS); result.enable(Capability.NUMERIC_CLASS); result.enable(Capability.DATE_CLASS); result.enable(Capability.MISSING_CLASS_VALUES); // instances result.setMinimumNumberInstances(0); return result; } /** * Generates the classifier. * * @param instances set of instances serving as training data * @throws Exception if the classifier has not been generated successfully */ public void buildClassifier(Instances instances) throws Exception { String debug = "(KStar.buildClassifier) "; // can classifier handle the data? getCapabilities().testWithFail(instances); // remove instances with missing class instances = new Instances(instances); instances.deleteWithMissingClass(); m_Train = new Instances(instances, 0, instances.numInstances()); // initializes class attributes ** java-speaking! :-) ** init_m_Attributes(); } /** * Adds the supplied instance to the training set * * @param instance the instance to add * @throws Exception if instance could not be incorporated successfully */ public void updateClassifier(Instance instance) throws Exception { String debug = "(KStar.updateClassifier) "; if (m_Train.equalHeaders(instance.dataset()) == false) throw new Exception("Incompatible instance types"); if ( instance.classIsMissing() ) return; m_Train.add(instance); // update relevant attributes ... update_m_Attributes(); } /** * Calculates the class membership probabilities for the given test instance. * * @param instance the instance to be classified * @return predicted class probability distribution * @throws Exception if an error occurred during the prediction */ public double [] distributionForInstance(Instance instance) throws Exception { String debug = "(KStar.distributionForInstance) "; double transProb = 0.0, temp = 0.0; double [] classProbability = new double[m_NumClasses]; double [] predictedValue = new double[1]; // initialization ... for (int i=0; i<classProbability.length; i++) { classProbability[i] = 0.0; } predictedValue[0] = 0.0; if (m_InitFlag == ON) { // need to compute them only once and will be used for all instances. // We are doing this because the evaluation module controls the calls. if (m_BlendMethod == B_ENTROPY) { generateRandomClassColomns(); } m_Cache = new KStarCache[m_NumAttributes]; for (int i=0; i<m_NumAttributes;i++) { m_Cache[i] = new KStarCache(); } m_InitFlag = OFF; // System.out.println("Computing..."); } // init done. Instance trainInstance; Enumeration enu = m_Train.enumerateInstances(); while ( enu.hasMoreElements() ) { trainInstance = (Instance)enu.nextElement(); transProb = instanceTransformationProbability(instance, trainInstance); switch ( m_ClassType ) { case Attribute.NOMINAL: classProbability[(int)trainInstance.classValue()] += transProb; break; case Attribute.NUMERIC: predictedValue[0] += transProb * trainInstance.classValue(); temp += transProb; break; } } if (m_ClassType == Attribute.NOMINAL) { double sum = Utils.sum(classProbability); if (sum <= 0.0) for (int i=0; i<classProbability.length; i++) classProbability[i] = (double) 1/ (double) m_NumClasses; else Utils.normalize(classProbability, sum); return classProbability; } else { predictedValue[0] = (temp != 0) ? predictedValue[0] / temp : 0.0; return predictedValue; } } /** * Calculate the probability of the first instance transforming into the * second instance: * the probability is the product of the transformation probabilities of * the attributes normilized over the number of instances used. * * @param first the test instance * @param second the train instance * @return transformation probability value */ private double instanceTransformationProbability(Instance first, Instance second) { String debug = "(KStar.instanceTransformationProbability) "; double transProb = 1.0; int numMissAttr = 0; for (int i = 0; i < m_NumAttributes; i++) { if (i == m_Train.classIndex()) { continue; // ignore class attribute } if (first.isMissing(i)) { // test instance attribute value is missing numMissAttr++; continue; } transProb *= attrTransProb(first, second, i); // normilize for missing values if (numMissAttr != m_NumAttributes) { transProb = Math.pow(transProb, (double)m_NumAttributes / (m_NumAttributes - numMissAttr)); } else { // weird case! transProb = 0.0; } } // normilize for the train dataset return transProb / m_NumInstances; } /** * Calculates the transformation probability of the indexed test attribute * to the indexed train attribute. *
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -