📄 j48.java
字号:
/* * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* * J48.java * Copyright (C) 1999 Eibe Frank * */package weka.classifiers.trees;import weka.classifiers.Classifier;import weka.classifiers.Sourcable;import weka.classifiers.trees.j48.BinC45ModelSelection;import weka.classifiers.trees.j48.C45ModelSelection;import weka.classifiers.trees.j48.C45PruneableClassifierTree;import weka.classifiers.trees.j48.ClassifierTree;import weka.classifiers.trees.j48.ModelSelection;import weka.classifiers.trees.j48.PruneableClassifierTree;import weka.core.AdditionalMeasureProducer;import weka.core.Capabilities;import weka.core.Drawable;import weka.core.Instance;import weka.core.Instances;import weka.core.Matchable;import weka.core.Option;import weka.core.OptionHandler;import weka.core.Summarizable;import weka.core.TechnicalInformation;import weka.core.TechnicalInformationHandler;import weka.core.Utils;import weka.core.WeightedInstancesHandler;import weka.core.TechnicalInformation.Field;import weka.core.TechnicalInformation.Type;import java.util.Enumeration;import java.util.Vector;/** <!-- globalinfo-start --> * Class for generating a pruned or unpruned C4.5 decision tree. For more information, see<br/> * <br/> * Ross Quinlan (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann Publishers, San Mateo, CA. * <p/> <!-- globalinfo-end --> * <!-- technical-bibtex-start --> * BibTeX: * <pre> * @book{Quinlan1993, * address = {San Mateo, CA}, * author = {Ross Quinlan}, * publisher = {Morgan Kaufmann Publishers}, * title = {C4.5: Programs for Machine Learning}, * year = {1993} * } * </pre> * <p/> <!-- technical-bibtex-end --> * <!-- options-start --> * Valid options are: <p/> * * <pre> -U * Use unpruned tree.</pre> * * <pre> -C <pruning confidence> * Set confidence threshold for pruning. * (default 0.25)</pre> * * <pre> -M <minimum number of instances> * Set minimum number of instances per leaf. * (default 2)</pre> * * <pre> -R * Use reduced error pruning.</pre> * * <pre> -N <number of folds> * Set number of folds for reduced error * pruning. One fold is used as pruning set. * (default 3)</pre> * * <pre> -B * Use binary splits only.</pre> * * <pre> -S * Don't perform subtree raising.</pre> * * <pre> -L * Do not clean up after the tree has been built.</pre> * * <pre> -A * Laplace smoothing for predicted probabilities.</pre> * * <pre> -Q <seed> * Seed for random data shuffling (default 1).</pre> * <!-- options-end --> * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.5 $ */public class J48 extends Classifier implements OptionHandler, Drawable, Matchable, Sourcable, WeightedInstancesHandler, Summarizable, AdditionalMeasureProducer, TechnicalInformationHandler { /** for serialization */ static final long serialVersionUID = -217733168393644444L; /** The decision tree */ private ClassifierTree m_root; /** Unpruned tree? */ private boolean m_unpruned = false; /** Confidence level */ private float m_CF = 0.25f; /** Minimum number of instances */ private int m_minNumObj = 2; /** Determines whether probabilities are smoothed using Laplace correction when predictions are generated */ private boolean m_useLaplace = false; /** Use reduced error pruning? */ private boolean m_reducedErrorPruning = false; /** Number of folds for reduced error pruning. */ private int m_numFolds = 3; /** Binary splits on nominal attributes? */ private boolean m_binarySplits = false; /** Subtree raising to be performed? */ private boolean m_subtreeRaising = true; /** Cleanup after the tree has been built. */ private boolean m_noCleanup = false; /** Random number seed for reduced-error pruning. */ private int m_Seed = 1; /** * Returns a string describing classifier * @return a description suitable for * displaying in the explorer/experimenter gui */ public String globalInfo() { return "Class for generating a pruned or unpruned C4.5 decision tree. For more " + "information, see\n\n" + getTechnicalInformation().toString(); } /** * Returns an instance of a TechnicalInformation object, containing * detailed information about the technical background of this class, * e.g., paper reference or book this class is based on. * * @return the technical information about this class */ public TechnicalInformation getTechnicalInformation() { TechnicalInformation result; result = new TechnicalInformation(Type.BOOK); result.setValue(Field.AUTHOR, "Ross Quinlan"); result.setValue(Field.YEAR, "1993"); result.setValue(Field.TITLE, "C4.5: Programs for Machine Learning"); result.setValue(Field.PUBLISHER, "Morgan Kaufmann Publishers"); result.setValue(Field.ADDRESS, "San Mateo, CA"); return result; } /** * Returns default capabilities of the classifier. * * @return the capabilities of this classifier */ public Capabilities getCapabilities() { Capabilities result; try { if (!m_reducedErrorPruning) result = new C45PruneableClassifierTree(null, !m_unpruned, m_CF, m_subtreeRaising, !m_noCleanup).getCapabilities(); else result = new PruneableClassifierTree(null, !m_unpruned, m_numFolds, !m_noCleanup, m_Seed).getCapabilities(); } catch (Exception e) { result = new Capabilities(this); } result.setOwner(this); return result; } /** * Generates the classifier. * * @param instances the data to train the classifier with * @throws Exception if classifier can't be built successfully */ public void buildClassifier(Instances instances) throws Exception { ModelSelection modSelection; if (m_binarySplits) modSelection = new BinC45ModelSelection(m_minNumObj, instances); else modSelection = new C45ModelSelection(m_minNumObj, instances); if (!m_reducedErrorPruning) m_root = new C45PruneableClassifierTree(modSelection, !m_unpruned, m_CF, m_subtreeRaising, !m_noCleanup); else m_root = new PruneableClassifierTree(modSelection, !m_unpruned, m_numFolds, !m_noCleanup, m_Seed); m_root.buildClassifier(instances); if (m_binarySplits) { ((BinC45ModelSelection)modSelection).cleanup(); } else { ((C45ModelSelection)modSelection).cleanup(); } } /** * Classifies an instance. * * @param instance the instance to classify * @return the classification for the instance * @throws Exception if instance can't be classified successfully */ public double classifyInstance(Instance instance) throws Exception { return m_root.classifyInstance(instance); } /** * Returns class probabilities for an instance. * * @param instance the instance to calculate the class probabilities for * @return the class probabilities * @throws Exception if distribution can't be computed successfully */ public final double [] distributionForInstance(Instance instance) throws Exception { return m_root.distributionForInstance(instance, m_useLaplace); } /** * Returns the type of graph this classifier * represents. * @return Drawable.TREE */ public int graphType() { return Drawable.TREE; } /** * Returns graph describing the tree. * * @return the graph describing the tree * @throws Exception if graph can't be computed */ public String graph() throws Exception { return m_root.graph(); } /** * Returns tree in prefix order. * * @return the tree in prefix order * @throws Exception if something goes wrong */ public String prefix() throws Exception { return m_root.prefix(); } /** * Returns tree as an if-then statement. * * @param className the name of the Java class * @return the tree as a Java if-then type statement * @throws Exception if something goes wrong */ public String toSource(String className) throws Exception { StringBuffer [] source = m_root.toSource(className); return "class " + className + " {\n\n" +" public static double classify(Object [] i)\n" +" throws Exception {\n\n" +" double p = Double.NaN;\n" + source[0] // Assignment code +" return p;\n" +" }\n" + source[1] // Support code +"}\n"; } /** * Returns an enumeration describing the available options. * * Valid options are: <p> * * -U <br> * Use unpruned tree.<p> * * -C confidence <br> * Set confidence threshold for pruning. (Default: 0.25) <p> * * -M number <br> * Set minimum number of instances per leaf. (Default: 2) <p> * * -R <br> * Use reduced error pruning. No subtree raising is performed. <p> * * -N number <br> * Set number of folds for reduced error pruning. One fold is * used as the pruning set. (Default: 3) <p> * * -B <br> * Use binary splits for nominal attributes. <p> * * -S <br> * Don't perform subtree raising. <p> * * -L <br> * Do not clean up after the tree has been built. * * -A <br> * If set, Laplace smoothing is used for predicted probabilites. <p> * * -Q <br> * The seed for reduced-error pruning. <p> * * @return an enumeration of all the available options. */ public Enumeration listOptions() { Vector newVector = new Vector(9); newVector. addElement(new Option("\tUse unpruned tree.", "U", 0, "-U")); newVector. addElement(new Option("\tSet confidence threshold for pruning.\n" + "\t(default 0.25)", "C", 1, "-C <pruning confidence>")); newVector. addElement(new Option("\tSet minimum number of instances per leaf.\n" + "\t(default 2)", "M", 1, "-M <minimum number of instances>")); newVector. addElement(new Option("\tUse reduced error pruning.", "R", 0, "-R")); newVector. addElement(new Option("\tSet number of folds for reduced error\n" + "\tpruning. One fold is used as pruning set.\n" + "\t(default 3)", "N", 1, "-N <number of folds>")); newVector. addElement(new Option("\tUse binary splits only.", "B", 0, "-B")); newVector. addElement(new Option("\tDon't perform subtree raising.", "S", 0, "-S")); newVector. addElement(new Option("\tDo not clean up after the tree has been built.", "L", 0, "-L")); newVector. addElement(new Option("\tLaplace smoothing for predicted probabilities.", "A", 0, "-A")); newVector. addElement(new Option("\tSeed for random data shuffling (default 1).", "Q", 1, "-Q <seed>")); return newVector.elements(); } /** * Parses a given list of options. * <!-- options-start --> * Valid options are: <p/> * * <pre> -U * Use unpruned tree.</pre> * * <pre> -C <pruning confidence> * Set confidence threshold for pruning. * (default 0.25)</pre> * * <pre> -M <minimum number of instances> * Set minimum number of instances per leaf. * (default 2)</pre> * * <pre> -R * Use reduced error pruning.</pre> * * <pre> -N <number of folds> * Set number of folds for reduced error * pruning. One fold is used as pruning set. * (default 3)</pre> * * <pre> -B * Use binary splits only.</pre> * * <pre> -S * Don't perform subtree raising.</pre> * * <pre> -L * Do not clean up after the tree has been built.</pre> * * <pre> -A * Laplace smoothing for predicted probabilities.</pre> * * <pre> -Q <seed> * Seed for random data shuffling (default 1).</pre> * <!-- options-end --> * * @param options the list of options as an array of strings * @throws Exception if an option is not supported */ public void setOptions(String[] options) throws Exception { // Other options String minNumString = Utils.getOption('M', options); if (minNumString.length() != 0) { m_minNumObj = Integer.parseInt(minNumString); } else { m_minNumObj = 2; } m_binarySplits = Utils.getFlag('B', options); m_useLaplace = Utils.getFlag('A', options); // Pruning options m_unpruned = Utils.getFlag('U', options); m_subtreeRaising = !Utils.getFlag('S', options); m_noCleanup = Utils.getFlag('L', options); if ((m_unpruned) && (!m_subtreeRaising)) { throw new Exception("Subtree raising doesn't need to be unset for unpruned tree!"); } m_reducedErrorPruning = Utils.getFlag('R', options); if ((m_unpruned) && (m_reducedErrorPruning)) { throw new Exception("Unpruned tree and reduced error pruning can't be selected " + "simultaneously!"); } String confidenceString = Utils.getOption('C', options);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -