⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pruneableclassifiertree.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    PruneableClassifierTree.java *    Copyright (C) 1999 Eibe Frank * */package weka.classifiers.trees.j48;import weka.core.Capabilities;import weka.core.Instances;import weka.core.Utils;import weka.core.Capabilities.Capability;import java.util.Random;/** * Class for handling a tree structure that can * be pruned using a pruning set.  * * @author Eibe Frank (eibe@cs.waikato.ac.nz) * @version $Revision: 1.10 $ */public class PruneableClassifierTree   extends ClassifierTree {    /** for serialization */  static final long serialVersionUID = -555775736857600201L;  /** True if the tree is to be pruned. */  private boolean pruneTheTree = false;  /** How many subsets of equal size? One used for pruning, the rest for training. */  private int numSets = 3;  /** Cleanup after the tree has been built. */  private boolean m_cleanup = true;  /** The random number seed. */  private int m_seed = 1;  /**   * Constructor for pruneable tree structure. Stores reference   * to associated training data at each node.   *   * @param toSelectLocModel selection method for local splitting model   * @param pruneTree true if the tree is to be pruned   * @param num number of subsets of equal size   * @param cleanup   * @param seed the seed value to use   * @throws Exception if something goes wrong   */  public PruneableClassifierTree(ModelSelection toSelectLocModel,				 boolean pruneTree, int num, boolean cleanup,				 int seed)       throws Exception {    super(toSelectLocModel);    pruneTheTree = pruneTree;    numSets = num;    m_cleanup = cleanup;    m_seed = seed;  }  /**   * Returns default capabilities of the classifier tree.   *   * @return      the capabilities of this classifier tree   */  public Capabilities getCapabilities() {    Capabilities result = super.getCapabilities();    // attributes    result.enable(Capability.NOMINAL_ATTRIBUTES);    result.enable(Capability.NUMERIC_ATTRIBUTES);    result.enable(Capability.DATE_ATTRIBUTES);    result.enable(Capability.MISSING_VALUES);    // class    result.enable(Capability.NOMINAL_CLASS);    result.enable(Capability.MISSING_CLASS_VALUES);    // instances    result.setMinimumNumberInstances(0);        return result;  }  /**   * Method for building a pruneable classifier tree.   *   * @param data the data to build the tree from    * @throws Exception if tree can't be built successfully   */  public void buildClassifier(Instances data)        throws Exception {    // can classifier tree handle the data?    getCapabilities().testWithFail(data);    // remove instances with missing class    data = new Instances(data);    data.deleteWithMissingClass();       Random random = new Random(m_seed);   data.stratify(numSets);   buildTree(data.trainCV(numSets, numSets - 1, random),	     data.testCV(numSets, numSets - 1), false);   if (pruneTheTree) {     prune();   }   if (m_cleanup) {     cleanup(new Instances(data, 0));   }  }  /**   * Prunes a tree.   *   * @throws Exception if tree can't be pruned successfully   */  public void prune() throws Exception {      if (!m_isLeaf) {            // Prune all subtrees.      for (int i = 0; i < m_sons.length; i++)	son(i).prune();            // Decide if leaf is best choice.      if (Utils.smOrEq(errorsForLeaf(),errorsForTree())) {		// Free son Trees	m_sons = null;	m_isLeaf = true;		// Get NoSplit Model for node.	m_localModel = new NoSplit(localModel().distribution());      }    }  }  /**   * Returns a newly created tree.   *   * @param train the training data   * @param test the test data   * @return the generated tree   * @throws Exception if something goes wrong   */  protected ClassifierTree getNewTree(Instances train, Instances test)        throws Exception {    PruneableClassifierTree newTree =       new PruneableClassifierTree(m_toSelectModel, pruneTheTree, numSets, m_cleanup,				  m_seed);    newTree.buildTree(train, test, false);    return newTree;  }  /**   * Computes estimated errors for tree.   *   * @return the estimated errors   * @throws Exception if error estimate can't be computed   */  private double errorsForTree() throws Exception {    double errors = 0;    if (m_isLeaf)      return errorsForLeaf();    else{      for (int i = 0; i < m_sons.length; i++)	if (Utils.eq(localModel().distribution().perBag(i), 0)) {	  errors += m_test.perBag(i)-	    m_test.perClassPerBag(i,localModel().distribution().				maxClass());	} else	  errors += son(i).errorsForTree();      return errors;    }  }  /**   * Computes estimated errors for leaf.   *   * @return the estimated errors   * @throws Exception if error estimate can't be computed   */  private double errorsForLeaf() throws Exception {    return m_test.total()-      m_test.perClass(localModel().distribution().maxClass());  }  /**   * Method just exists to make program easier to read.   */  private ClassifierSplitModel localModel() {        return (ClassifierSplitModel)m_localModel;  }  /**   * Method just exists to make program easier to read.   */  private PruneableClassifierTree son(int index) {    return (PruneableClassifierTree)m_sons[index];  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -