⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 nbtreenosplit.java

📁 代码是一个分类器的实现,其中使用了部分weka的源代码。可以将项目导入eclipse运行
💻 JAVA
字号:
/* *    This program is free software; you can redistribute it and/or modify *    it under the terms of the GNU General Public License as published by *    the Free Software Foundation; either version 2 of the License, or *    (at your option) any later version. * *    This program is distributed in the hope that it will be useful, *    but WITHOUT ANY WARRANTY; without even the implied warranty of *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the *    GNU General Public License for more details. * *    You should have received a copy of the GNU General Public License *    along with this program; if not, write to the Free Software *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. *//* *    NBTreeNoSplit.java *    Copyright (C) 2004 Mark Hall * */package weka.classifiers.trees.j48;import java.util.Random;import weka.core.*;import weka.classifiers.Classifier;import weka.classifiers.Evaluation;import weka.classifiers.bayes.NaiveBayesUpdateable;import weka.filters.supervised.attribute.Discretize;import weka.filters.Filter;/** * Class implementing a "no-split"-split (leaf node) for naive bayes * trees. * * @author Mark Hall (mhall@cs.waikato.ac.nz) * @version $Revision: 1.1 $ */public final class NBTreeNoSplit extends ClassifierSplitModel {  /** the naive bayes classifier */  private NaiveBayesUpdateable m_nb;  /** the discretizer used */  private Discretize m_disc;  /** errors on the training data at this node */  private double m_errors;  public NBTreeNoSplit() {    m_numSubsets = 1;  }  /**   * Build the no-split node   *   * @param instances an <code>Instances</code> value   * @exception Exception if an error occurs   */  public final void buildClassifier(Instances instances) throws Exception {    m_nb = new NaiveBayesUpdateable();    m_disc = new Discretize();    m_disc.setInputFormat(instances);    Instances temp = Filter.useFilter(instances, m_disc);    m_nb.buildClassifier(temp);    if (temp.numInstances() >= 5) {      m_errors = crossValidate(m_nb, temp, new Random(1));    }    m_numSubsets = 1;  }  /**   * Return the errors made by the naive bayes model at this node   *   * @return the number of errors made   */  public double getErrors() {    return m_errors;  }  /**   * Return the discretizer used at this node   *   * @return a <code>Discretize</code> value   */  public Discretize getDiscretizer() {    return m_disc;  }  /**   * Get the naive bayes model at this node   *   * @return a <code>NaiveBayesUpdateable</code> value   */  public NaiveBayesUpdateable getNaiveBayesModel() {    return m_nb;  }  /**   * Always returns 0 because only there is only one subset.   */  public final int whichSubset(Instance instance){        return 0;  }  /**   * Always returns null because there is only one subset.   */  public final double [] weights(Instance instance){    return null;  }    /**   * Does nothing because no condition has to be satisfied.   */  public final String leftSide(Instances instances){    return "";  }    /**   * Does nothing because no condition has to be satisfied.   */  public final String rightSide(int index, Instances instances){    return "";  }  /**   * Returns a string containing java source code equivalent to the test   * made at this node. The instance being tested is called "i".   *   * @param index index of the nominal value tested   * @param data the data containing instance structure info   * @return a value of type 'String'   */  public final String sourceExpression(int index, Instances data) {    return "true";  // or should this be false??  }  /**   * Return the probability for a class value   *   * @param classIndex the index of the class value   * @param instance the instance to generate a probability for   * @param theSubset the subset to consider   * @return a probability   * @exception Exception if an error occurs   */  public double classProb(int classIndex, Instance instance, int theSubset)     throws Exception {    m_disc.input(instance);    Instance temp = m_disc.output();    return m_nb.distributionForInstance(temp)[classIndex];  }  /**   * Return a textual description of the node   *   * @return a <code>String</code> value   */  public String toString() {    return m_nb.toString();  }  /**   * Utility method for fast 5-fold cross validation of a naive bayes   * model   *   * @param fullModel a <code>NaiveBayesUpdateable</code> value   * @param trainingSet an <code>Instances</code> value   * @param r a <code>Random</code> value   * @return a <code>double</code> value   * @exception Exception if an error occurs   */  public static double crossValidate(NaiveBayesUpdateable fullModel,			       Instances trainingSet,			       Random r) throws Exception {    // make some copies for fast evaluation of 5-fold xval    Classifier [] copies = Classifier.makeCopies(fullModel, 5);    Evaluation eval = new Evaluation(trainingSet);    // make some splits    for (int j = 0; j < 5; j++) {      Instances test = trainingSet.testCV(5, j);      // unlearn these test instances      for (int k = 0; k < test.numInstances(); k++) {	test.instance(k).setWeight(-test.instance(k).weight());	((NaiveBayesUpdateable)copies[j]).updateClassifier(test.instance(k));	// reset the weight back to its original value	test.instance(k).setWeight(-test.instance(k).weight());      }      eval.evaluateModel(copies[j], test);    }    return eval.incorrect();  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -