📄 parzen_hypercube.m
字号:
clc;clear;%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%读取数据,取16个特征%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%samples = textread('data2000.txt');samples = samples(:,[1:6,9:15,19:22]); %17列 第1列标号,16列特征%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%对样本进行归一化处理%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%[ms ns]=size(samples);TMax=max(samples);TMin=min(samples);% 第一列是样本标签,从第二列开始归一化for i=2:ns samples(:,i)=(samples(:,i)-TMin(i))/(TMax(i)-TMin(i));end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%将样本分为测试样本,第一类训练样本,第二类训练样本%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%p = randperm(2000);%对1:2000的整数随机排序experiment_test=samples(p(1:500),:);%测试样本exper_test=experiment_test(:,2:ns);%测试样本,不带标签experiment_train=samples(p(501:2000),:);%训练样本index1=find(experiment_train(:,1)==1);%找到训练样本中第一类的行号index2=find(experiment_train(:,1)==2);%找到训练样本中第二类的行号exper_train_class1=experiment_train(index1,2:ns);%训练样本里属于第一类的样本,不带标签exper_train_class2=experiment_train(index2,2:ns);%训练样本里属于第二类的样本,不带标签[m n]=size(exper_test);[m1 n1]=size(exper_train_class1);[m2 n2]=size(exper_train_class2);%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%计算类条件概率密度%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%计算P(x/wi)=k/(nV)%取边长hn=1的d=10维超立方体%首先计算落入每个待测样本点的超立方体的点的个数hn=1;V=hn^n;K1=zeros(m,1);%记录第一类训练样本落入待测样本的超立方体的点的个数K2=zeros(m,1);%记录第二类训练样本落入待测样本的超立方体的点的个数R1=zeros(m,1);%记录待测样本在第一类的测试结果R2=zeros(m,1);%记录待测样本在第二类的测试结果Result=zeros(m,1);%记录最后分类结果%先算第一类for i=1:m%对每个待测样本 for j=1:m1%检测每个训练样本 flag=0; for k=1:n%检查每个分量abs(xi)<(hn/2),如果都小于则待测样本落入超立方体 if(abs(exper_test(i,k)-exper_train_class1(j,k))<(hn/2)) flag=flag+1; end end if flag==n K1(i,1)=K1(i,1)+1; end end R1(i,1)=K1(i,1)/(n*V);end%再算第二类for i=1:m%对每个待测样本 for j=1:m2%检测每个训练样本 flag=0; for k=1:n%检查每个分量abs(xi)<(hn/2),如果都小于则待测样本落入超立方体 if(abs(exper_test(i,k)-exper_train_class2(j,k))<(hn/2)) flag=flag+1; end end if flag==n K2(i,1)=K2(i,1)+1; end end R2(i,1)=K2(i,1)/(n*V);end%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%画类条件概率密度图,并分类%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%绘图plot(R1,'-r','LineWidth',2);hold on;plot(R2,'-b','LineWidth',2);xlabel ('待测样本'); ylabel ('类条件概率密度 P(x|wi)');title ('类条件概率密度图');%分类for i=1:m if R1(i,1)>R2(i,1) Result(i,1)=1; else Result(i,1)=2; endend%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%分析结果%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%[correct,error,ROC] = analyse_result(experiment_test,Result);
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -