📄 tgsvd.m
字号:
function [x_k,rho,eta] = tgsvd(U,sm,X,b,k)%TGSVD Truncated GSVD regularization.%% [x_k,rho,eta] = tgsvd(U,sm,X,b,k) , sm = [sigma,mu]%% Computes the truncated GSVD solution% [ 0 0 0 ]% x_k = X*[ 0 inv(diag(sigma(p-k+1:p))) 0 ]*U'*b .% [ 0 0 eye(n-p) ]% If k is a vector, then x_k is a matrix such that% x_k = [ x_k(1), x_k(2), ... ] .%% The solution seminorm and the residual norm are returned in eta and rho.% Reference: P. C. Hansen, "Regularization, GSVD and truncated GSVD",% BIT 29 (1989), 491-504.% Per Christian Hansen, IMM, Feb. 24, 2008.% Initializationm = size(U,1);n = size(X,1);p = size(sm,1);lk = length(k);if (min(k)<0 | max(k)>p) error('Illegal truncation parameter k')endx_k = zeros(n,lk);eta = zeros(lk,1); rho = zeros(lk,1);beta = U'*b;xi = beta(1:p)./sm(:,1);if (nargout==3), mxi = sm(:,2).*xi; endif (m>=n) % The overdetermined or square case. Treat each k separately. if (p==n) x_0 = zeros(n,1); else x_0 = X(:,p+1:n)*(U(:,p+1:n)'*b); end for j=1:lk i = k(j); pi1 = p-i+1; if(i==0) x_k(:,j) = x_0; else x_k(:,j) = X(:,pi1:p)*xi(pi1:p) + x_0; end if (nargout>1), rho(j) = norm(beta(1:p-i)); end if (nargout==3), eta(j) = norm(mxi(pi1:p)); end end if (nargout > 1 & size(U,1) > n) rho = sqrt(rho.^2 + norm(b - U(:,1:n)*beta(1:n))^2); endelse % The underdetermined case. Treat each k separately. if (p==m) x_0 = zeros(n,1); else x_0 = X(:,p+1:m)*(U(:,p+1:m)'*b); end for j=1:lk i = k(j); pi1 = p-i+1; if(i==0) x_k(:,j) = x_0; else x_k(:,j) = X(:,pi1:p)*xi(pi1:p) + x_0; end if (nargout>1), rho(j) = norm(beta(1:p-i)); end if (nargout==3), eta(j) = norm(mxi(pi1:p)); end endend
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -