⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 lsqr_b.m

📁 A comparison of methods for inverting helioseismic data
💻 M
字号:
function [X,rho,eta,F] = lsqr_b(A,b,k,reorth,s)%LSQR_B Solution of least squares problems by Lanczos bidiagonalization.%% [X,rho,eta,F] = lsqr_b(A,b,k,reorth,s)%% Performs k steps of the LSQR Lanczos bidiagonalization algorithm% applied to the system%    min || A x - b || .% The routine returns all k solutions, stored as columns of% the matrix X.  The solution norm and residual norm are returned% in eta and rho, respectively.%% If the singular values s are also provided, lsqr computes the% filter factors associated with each step and stores them columnwise% in the matrix F.%% Reorthogonalization is controlled by means of reorth:%    reorth = 0 : no reorthogonalization (default),%    reorth = 1 : reorthogonalization by means of MGS.% Reference: C. C. Paige & M. A. Saunders, "LSQR: an algorithm for% sparse linear equations and sparse least squares", ACM Trans.% Math. Software 8 (1982), 43-71.% Per Christian Hansen, IMM, April 8, 2001.% The fudge threshold is used to prevent filter factors from exploding.fudge_thr = 1e-4;% Initialization.if (k < 1), error('Number of steps k must be positive'), endif (nargin==3), reorth = 0; endif (nargout==4 & nargin<5), error('Too few input arguments'), end[m,n] = size(A); X = zeros(n,k);if (reorth==0)  UV = 0;elseif (reorth==1)  U = zeros(m,k); V = zeros(n,k); UV = 1;  if (k>=n), error('No. of iterations must satisfy k < n'), endelse  error('Illegal reorth')endif (nargout > 1)  eta = zeros(k,1); rho = eta;  c2 = -1; s2 = 0; xnorm = 0; z = 0;endif (nargin==5)  ls = length(s);  F = zeros(ls,k); Fv = zeros(ls,1); Fw = Fv;  s = s.^2;end% Prepare for LSQR iteration.v = zeros(n,1); x = v; beta = norm(b);if (beta==0), error('Right-hand side must be nonzero'), endu = b/beta; if (UV), U(:,1) = u; endr = (u'*A)'; alpha = norm(r);   % A'*u;v = r/alpha; if (UV), V(:,1) = v; endphi_bar = beta; rho_bar = alpha; w = v;if (nargin==5), Fv = s/(alpha*beta); Fw = Fv; end% Perform Lanczos bidiagonalization with/without reorthogonalization.for i=2:k+1  alpha_old = alpha; beta_old = beta;  % Compute A*v - alpha*u.  p = A*v - alpha*u;  if (reorth==0)    beta = norm(p); u = p/beta;  else    for j=1:i-1, p = p - (U(:,j)'*p)*U(:,j); end    beta = norm(p); u = p/beta;  end  % Compute A'*u - beta*v.  r = A'*u - beta*v;  if (reorth==0)    alpha = norm(r); v = r/alpha;  else    for j=1:i-1, r = r - (V(:,j)'*r)*V(:,j); end    alpha = norm(r); v = r/alpha;  end  % Store U and V if necessary.  if (UV), U(:,i) = u; V(:,i) = v; end  % Construct and apply orthogonal transformation.  rrho = norm([rho_bar,beta]); c1 = rho_bar/rrho;  s1 = beta/rrho; theta = s1*alpha; rho_bar = -c1*alpha;  phi = c1*phi_bar; phi_bar = s1*phi_bar;  % Compute solution norm and residual norm if necessary;  if (nargout > 1)    delta = s2*rrho; gamma_bar = -c2*rrho; rhs = phi - delta*z;    z_bar = rhs/gamma_bar; eta(i-1) = norm([xnorm,z_bar]);    gamma = norm([gamma_bar,theta]);    c2 = gamma_bar/gamma; s2 = theta/gamma;    z = rhs/gamma; xnorm = norm([xnorm,z]);    rho(i-1) = abs(phi_bar);  end  % If required, compute the filter factors.  if (nargin==5)    if (i==2)      Fv_old = Fv;      Fv = Fv.*(s - beta^2 - alpha_old^2)/(alpha*beta);      F(:,i-1) = (phi/rrho)*Fw;    else      tmp = Fv;      Fv = (Fv.*(s - beta^2 - alpha_old^2) - ...                 Fv_old*alpha_old*beta_old)/(alpha*beta);      Fv_old = tmp;      F(:,i-1) = F(:,i-2) + (phi/rrho)*Fw;    end    if (i > 3)      f = find(abs(F(:,i-2)-1) < fudge_thr & abs(F(:,i-3)-1) < fudge_thr);      if ~isempty(f), F(f,i-1) = ones(length(f),1); end    end    Fw = Fv - (theta/rrho)*Fw;  end  % Update the solution.  x = x + (phi/rrho)*w; w = v - (theta/rrho)*w;  X(:,i-1) = x;end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -