📄 lsqr_b.m
字号:
function [X,rho,eta,F] = lsqr_b(A,b,k,reorth,s)%LSQR_B Solution of least squares problems by Lanczos bidiagonalization.%% [X,rho,eta,F] = lsqr_b(A,b,k,reorth,s)%% Performs k steps of the LSQR Lanczos bidiagonalization algorithm% applied to the system% min || A x - b || .% The routine returns all k solutions, stored as columns of% the matrix X. The solution norm and residual norm are returned% in eta and rho, respectively.%% If the singular values s are also provided, lsqr computes the% filter factors associated with each step and stores them columnwise% in the matrix F.%% Reorthogonalization is controlled by means of reorth:% reorth = 0 : no reorthogonalization (default),% reorth = 1 : reorthogonalization by means of MGS.% Reference: C. C. Paige & M. A. Saunders, "LSQR: an algorithm for% sparse linear equations and sparse least squares", ACM Trans.% Math. Software 8 (1982), 43-71.% Per Christian Hansen, IMM, April 8, 2001.% The fudge threshold is used to prevent filter factors from exploding.fudge_thr = 1e-4;% Initialization.if (k < 1), error('Number of steps k must be positive'), endif (nargin==3), reorth = 0; endif (nargout==4 & nargin<5), error('Too few input arguments'), end[m,n] = size(A); X = zeros(n,k);if (reorth==0) UV = 0;elseif (reorth==1) U = zeros(m,k); V = zeros(n,k); UV = 1; if (k>=n), error('No. of iterations must satisfy k < n'), endelse error('Illegal reorth')endif (nargout > 1) eta = zeros(k,1); rho = eta; c2 = -1; s2 = 0; xnorm = 0; z = 0;endif (nargin==5) ls = length(s); F = zeros(ls,k); Fv = zeros(ls,1); Fw = Fv; s = s.^2;end% Prepare for LSQR iteration.v = zeros(n,1); x = v; beta = norm(b);if (beta==0), error('Right-hand side must be nonzero'), endu = b/beta; if (UV), U(:,1) = u; endr = (u'*A)'; alpha = norm(r); % A'*u;v = r/alpha; if (UV), V(:,1) = v; endphi_bar = beta; rho_bar = alpha; w = v;if (nargin==5), Fv = s/(alpha*beta); Fw = Fv; end% Perform Lanczos bidiagonalization with/without reorthogonalization.for i=2:k+1 alpha_old = alpha; beta_old = beta; % Compute A*v - alpha*u. p = A*v - alpha*u; if (reorth==0) beta = norm(p); u = p/beta; else for j=1:i-1, p = p - (U(:,j)'*p)*U(:,j); end beta = norm(p); u = p/beta; end % Compute A'*u - beta*v. r = A'*u - beta*v; if (reorth==0) alpha = norm(r); v = r/alpha; else for j=1:i-1, r = r - (V(:,j)'*r)*V(:,j); end alpha = norm(r); v = r/alpha; end % Store U and V if necessary. if (UV), U(:,i) = u; V(:,i) = v; end % Construct and apply orthogonal transformation. rrho = norm([rho_bar,beta]); c1 = rho_bar/rrho; s1 = beta/rrho; theta = s1*alpha; rho_bar = -c1*alpha; phi = c1*phi_bar; phi_bar = s1*phi_bar; % Compute solution norm and residual norm if necessary; if (nargout > 1) delta = s2*rrho; gamma_bar = -c2*rrho; rhs = phi - delta*z; z_bar = rhs/gamma_bar; eta(i-1) = norm([xnorm,z_bar]); gamma = norm([gamma_bar,theta]); c2 = gamma_bar/gamma; s2 = theta/gamma; z = rhs/gamma; xnorm = norm([xnorm,z]); rho(i-1) = abs(phi_bar); end % If required, compute the filter factors. if (nargin==5) if (i==2) Fv_old = Fv; Fv = Fv.*(s - beta^2 - alpha_old^2)/(alpha*beta); F(:,i-1) = (phi/rrho)*Fw; else tmp = Fv; Fv = (Fv.*(s - beta^2 - alpha_old^2) - ... Fv_old*alpha_old*beta_old)/(alpha*beta); Fv_old = tmp; F(:,i-1) = F(:,i-2) + (phi/rrho)*Fw; end if (i > 3) f = find(abs(F(:,i-2)-1) < fudge_thr & abs(F(:,i-3)-1) < fudge_thr); if ~isempty(f), F(f,i-1) = ones(length(f),1); end end Fw = Fv - (theta/rrho)*Fw; end % Update the solution. x = x + (phi/rrho)*w; w = v - (theta/rrho)*w; X(:,i-1) = x;end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -