⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 discrep.m

📁 A comparison of methods for inverting helioseismic data
💻 M
字号:
function [x_delta,lambda] = discrep(U,s,V,b,delta,x_0)%DISCREP Discrepancy principle criterion for choosing the reg. parameter.%% [x_delta,lambda] = discrep(U,s,V,b,delta,x_0)% [x_delta,lambda] = discrep(U,sm,X,b,delta,x_0)  ,  sm = [sigma,mu]%% Least squares minimization with a quadratic inequality constraint:%    min || x - x_0 ||       subject to   || A x - b || <= delta%    min || L (x - x_0) ||   subject to   || A x - b || <= delta% where x_0 is an initial guess of the solution, and delta is a% positive constant.  Requires either the compact SVD of A saved as% U, s, and V, or part of the GSVD of (A,L) saved as U, sm, and X.% The regularization parameter lambda is also returned.%% If delta is a vector, then x_delta is a matrix such that%    x_delta = [ x_delta(1), x_delta(2), ... ] .%% If x_0 is not specified, x_0 = 0 is used.% Reference: V. A. Morozov, "Methods for Solving Incorrectly Posed% Problems", Springer, 1984; Chapter 26.% Per Christian Hansen, IMM, August 6, 2007.% Initialization.m = size(U,1);          n = size(V,1);[p,ps] = size(s);       ld  = length(delta);x_delta = zeros(n,ld);  lambda = zeros(ld,1);  rho = zeros(p,1);if (min(delta)<0)  error('Illegal inequality constraint delta')endif (nargin==5), x_0 = zeros(n,1); endif (ps == 1), omega = V'*x_0; else omega = V\x_0; end% Compute residual norms corresponding to TSVD/TGSVD.beta = U'*b;if (ps == 1)  delta_0 = norm(b - U*beta);  rho(p) = delta_0^2;  for i=p:-1:2    rho(i-1) = rho(i) + (beta(i) - s(i)*omega(i))^2;  endelse  delta_0 = norm(b - U*beta);  rho(1) = delta_0^2;  for i=1:p-1    rho(i+1) = rho(i) + (beta(i) - s(i,1)*omega(i))^2;  endend% Check input.if (min(delta) < delta_0)  error('Irrelevant delta < || (I - U*U'')*b ||')end% Determine the initial guess via rho-vector, then solve the nonlinear% equation || b - A x ||^2 - delta_0^2 = 0 via Newton's method.if (ps == 1)      % The standard-form case.  s2 = s.^2;  for k=1:ld    if (delta(k)^2 >= norm(beta - s.*omega)^2 + delta_0^2)      x_delta(:,k) = x_0;    else      [dummy,kmin] = min(abs(rho - delta(k)^2));      lambda_0 = s(kmin);      lambda(k) = newton(lambda_0,delta(k),s,beta,omega,delta_0);      e = s./(s2 + lambda(k)^2); f = s.*e;      x_delta(:,k) = V(:,1:p)*(e.*beta + (1-f).*omega);    end  end  elseif (m>=n)      % The overdetermined or square genera-form case.  omega = omega(1:p); gamma = s(:,1)./s(:,2);  x_u   = V(:,p+1:n)*beta(p+1:n);  for k=1:ld    if (delta(k)^2 >= norm(beta(1:p) - s(:,1).*omega)^2 + delta_0^2)      x_delta(:,k) = V*[omega;U(:,p+1:n)'*b];    else      [dummy,kmin] = min(abs(rho - delta(k)^2));      lambda_0 = gamma(kmin);      lambda(k) = newton(lambda_0,delta(k),s,beta(1:p),omega,delta_0);      e = gamma./(gamma.^2 + lambda(k)^2); f = gamma.*e;      x_delta(:,k) = V(:,1:p)*(e.*beta(1:p)./s(:,2) + ...                               (1-f).*s(:,2).*omega) + x_u;    end  end  else  % The underdetermined general-form case.  omega = omega(1:p); gamma = s(:,1)./s(:,2);  x_u   = V(:,p+1:m)*beta(p+1:m);  for k=1:ld    if (delta(k)^2 >= norm(beta(1:p) - s(:,1).*omega)^2 + delta_0^2)      x_delta(:,k) = V*[omega;U(:,p+1:m)'*b];    else      [dummy,kmin] = min(abs(rho - delta(k)^2));      lambda_0 = gamma(kmin);      lambda(k) = newton(lambda_0,delta(k),s,beta(1:p),omega,delta_0);      e = gamma./(gamma.^2 + lambda(k)^2); f = gamma.*e;      x_delta(:,k) = V(:,1:p)*(e.*beta(1:p)./s(:,2) + ...                               (1-f).*s(:,2).*omega) + x_u;    end  endend%-------------------------------------------------------------------function lambda = newton(lambda_0,delta,s,beta,omega,delta_0)%NEWTON Newton iteration (utility routine for DISCREP).%% lambda = newton(lambda_0,delta,s,beta,omega,delta_0)%% Uses Newton iteration to find the solution lambda to the equation%    || A x_lambda - b || = delta ,% where x_lambda is the solution defined by Tikhonov regularization.%% The initial guess is lambda_0.%% The norm || A x_lambda - b || is computed via s, beta, omega and% delta_0.  Here, s holds either the singular values of A, if L = I,% or the c,s-pairs of the GSVD of (A,L), if L ~= I.  Moreover,% beta = U'*b and omega is either V'*x_0 or the first p elements of% inv(X)*x_0.  Finally, delta_0 is the incompatibility measure.% Reference: V. A. Morozov, "Methods for Solving Incorrectly Posed% Problems", Springer, 1984; Chapter 26.% Per Christian Hansen, IMM, 12/29/97.% Set defaults.thr = sqrt(eps);  % Relative stopping criterion.it_max = 50;      % Max number of iterations.% Initialization.if (lambda_0 < 0)  error('Initial guess lambda_0 must be nonnegative')end[p,ps] = size(s);if (ps==2), sigma = s(:,1); s = s(:,1)./s(:,2); ends2 = s.^2;% Use Newton's method to solve || b - A x ||^2 - delta^2 = 0.% It was found experimentally, that this formulation is superior% to the formulation || b - A x ||^(-2) - delta^(-2) = 0.lambda = lambda_0; step = 1; it = 0;while (abs(step) > thr*lambda & abs(step) > thr & it < it_max), it = it+1;  f = s2./(s2 + lambda^2);  if (ps==1)    r = (1-f).*(beta - s.*omega);    z = f.*r;  else    r = (1-f).*(beta - sigma.*omega);    z = f.*r;  end  step = (lambda/4)*(r'*r + (delta_0+delta)*(delta_0-delta))/(z'*r);  lambda = lambda - step;  % If lambda < 0 then restart with smaller initial guess.  if (lambda < 0), lambda = 0.5*lambda_0; lambda_0 = 0.5*lambda_0; endend% Terminate with an error if too many iterations.if (abs(step) > thr*lambda & abs(step) > thr)  error(['Max. number of iterations (',num2str(it_max),') reached'])end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -