📄 mr2.m
字号:
function [X,rho,eta] = mr2(A,b,k,reorth)%MR2 Solution of symmetric indefinite problems by the MR-II algorithm%% [X,rho,eta] = mr2(A,b,k,reorth)%% MR-II is a variant of the MINRES algorithm for symmetric indefinite linear% systems A x = b, with starting vector A*b (instead of b as in MINRES).% This function returns all k iterates, stored as the columns of the% matrix X. The solution norm and residual norm are returned in eta and% rho, respectively.%% Reorthogonalization is controlled by means of reorth:% reorth = 0 : no reorthogonalization (default),% reorth = 1 : reorthogonalization by means of MGS.% Reference: M. Hanke, "Conjugate Gradient Methods for Ill-Posed Problems",% Longman Scientific and Technical, Essex, 1995.% Per Christian Hansen, IMM, September 1, 2007.% Based on the function mr2 from Restore Tools by James G. Nagy.% Initialization.if (k < 1), error('Number of steps k must be positive'), endif (nargin==3), reorth = 0; end[m,n] = size(A);if (m ~= n || norm(A-A','fro')), error('The matrix must be symmetric'), end% Allocate space.X = zeros(n,k);if reorth W = zeros(n,k); if (k>=n), error('No. of iterations must satisfy k < n'), endendif (nargout > 1) eta = zeros(k,1); rho = eta;end% Prepare for interation.x = zeros(n,1); r = b;vold = 0; v = A*r;wold = 0; w = A*v;beta = norm(w);v = v./beta; w = w./beta;if reorth, W(:,1) = w; end% Perform k iterations.for i=1:k rrho = r'*w; x = x + rrho*v; r = r - rrho*w; Aw = A*w; alpha = w'*Aw; vnew = w - alpha*v - beta*vold; wnew = Aw - alpha*w - beta*wold; vold = v; wold = w; v = vnew; w = wnew; if reorth for j=1:i, w = w - (W(:,j)'*w)*W(:,j); end end; beta = norm(w); v = v./beta; w = w./beta; if reorth, W(:,i+1) = w; end; X(:,i) = x; if (nargout>1), rho(i) = norm(r); end if (nargout>2), eta(i) = norm(x); end end
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -