⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 pcgls.m

📁 A comparison of methods for inverting helioseismic data
💻 M
字号:
function [X,rho,eta,F] = pcgls(A,L,W,b,k,reorth,sm)%PCGLS "Precond." conjugate gradients appl. implicitly to normal equations.% [X,rho,eta,F] = pcgls(A,L,W,b,k,reorth,sm)%% Performs k steps of the `preconditioned' conjugate gradient% algorithm applied implicitly to the normal equations%    (A*L_p)'*(A*L_p)*x = (A*L_p)'*b ,% where L_p is the A-weighted generalized inverse of L.  Notice that the% matrix W holding a basis for the null space of L must also be specified.%% The routine returns all k solutions, stored as columns of the matrix X.% The solution seminorm and residual norm are returned in eta and rho,% respectively.%% If the generalized singular values sm of (A,L) are also provided,% pcgls computes the filter factors associated with each step and% stores them columnwise in the matrix F.%% Reorthogonalization of the normal equation residual vectors% A'*(A*X(:,i)-b) is controlled by means of reorth:%    reorth = 0 : no reorthogonalization (default),%    reorth = 1 : reorthogonalization by means of MGS.% References: A. Bjorck, "Numerical Methods for Least Squares Problems",% SIAM, Philadelphia, 1996.% P. C. Hansen, "Rank-Deficient and Discrete Ill-Posed Problems.% Numerical Aspects of Linear Inversion", SIAM, Philadelphia, 1997.% Per Christian Hansen, IMM and Martin Hanke, Institut fuer% Praktische Mathematik, Universitaet Karlsruhe, 07/02/97.% The fudge threshold is used to prevent filter factors from exploding.fudge_thr = 1e-4;% Initializationif (k < 1), error('Number of steps k must be positive'), endif (nargin==5), reorth = 0; endif (nargout==4 & nargin<7), error('Too few input arguments'), endif (reorth<0 | reorth>1), error('Illegal reorth'), end[m,n] = size(A); p = size(L,1); X = zeros(n,k);if (nargout > 1)  eta = zeros(k,1); rho = eta;endif (nargin==7)  F = zeros(p,k); Fd = zeros(p,1); gamma = (sm(:,1)./sm(:,2)).^2;end% Prepare for computations with L_p.[NAA,x_0] = pinit(W,A,b);% Prepare for CG iteartion.x  = x_0;r  = b - A*x_0; s = A'*r;q1 = ltsolve(L,s);q  = lsolve(L,q1,W,NAA);z  = q;dq = s'*q;if (nargout>2), z1 = q1; x1 = zeros(p,1); endif (reorth==1)  Q1n = zeros(p,k);  Q1n = q1/norm(q1);end% Iterate.for j=1:k  % Update x and r vectors; compute q1.  Az  = A*z; alpha = dq/(Az'*Az);  x   = x + alpha*z;  r   = r - alpha*Az; s = A'*r;  q1  = ltsolve(L,s);  % Reorthogonalize q1 to previous q1-vectors, if required.  if (reorth==1)    for i=1:j, q1 = q1 - (Q1n(:,i)'*q1)*Q1n(:,i); end    Q1n = [Q1n,q1/norm(q1)];  end  % Update z vector.  q   = lsolve(L,q1,W,NAA);  dq2 = s'*q; beta = dq2/dq;  dq  = dq2;  z   = q + beta*z;  X(:,j) = x;  if (nargout>1), rho(j) = norm(r); end  if (nargout>2)    x1 = x1 + alpha*z1; z1 = q1 + beta*z1; eta(j) = norm(x1);  end  % Compute filter factors, if required.  if (nargin==7)    if (j==1)      F(:,1) = alpha*gamma;      Fd = gamma - gamma.*F(:,1) + beta*gamma;    else      F(:,j) = F(:,j-1) + alpha*Fd;      Fd = gamma - gamma.*F(:,j) + beta*Fd;    end    if (j > 2)      f = find(abs(F(:,j-1)-1) < fudge_thr & abs(F(:,j-2)-1) < fudge_thr);      if ~isempty(f), F(f,j) = ones(length(f),1); end    end  endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -