⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ncp.m

📁 A comparison of methods for inverting helioseismic data
💻 M
字号:
function [reg_min,dist,reg_param] = ncp(U,s,b,method)%NCP Plot the NCPs and find the one closest to a straight line.%% [reg_min,G,reg_param] = ncp(U,s,b,method)% [reg_min,G,reg_param] = ncp(U,sm,b,method)  ,  sm = [sigma,mu]%% Plots the normalized cumulative priodograms (NCPs) for the residual% vectors A*x - b.  The following methods are allowed:%    method = 'Tikh' : Tikhonov regularization%    method = 'tsvd' : truncated SVD or GSVD%    method = 'dsvd' : damped SVD or GSVD% If method is not specified, 'Tikh' is default.%% The NCP closest to a straight line is identified and the corresponding% regularization parameter reg_min is returned.  Moreover, dist holds the% distances to the straight line, and reg_param are the corresponding% regularization parameters.% Per Christian Hansen, IMM, Jan. 4, 2008.% Reference: P. C. Hansen, M. Kilmer & R. H. Kjeldsen, "Exploiting% residual information in the parameter choice for discrete ill-posed% problems", BIT 46 (2006), 41-59.% Set defaults.if (nargin==3), method='Tikh'; end  % Default method.npoints = 200;                      % Number of initial NCPS for Tikhonov.nNCPs = 20;                         % Number of NCPs shown for Tikhonov.smin_ratio = 16*eps;                % Smallest regularization parameter.% Initialization.m = size(U,1); [p,ps] = size(s);beta = U'*b;if (ps==2)  s = s(p:-1:1,1)./s(p:-1:1,2); beta = beta(p:-1:1);endif (strncmp(method,'Tikh',4) | strncmp(method,'tikh',4))  % Vector of regularization parameters.  reg_param = zeros(npoints,1);  reg_param(npoints) = max([s(p),s(1)*smin_ratio]);  ratio = (s(1)/reg_param(npoints))^(1/(npoints-1));  for i=npoints-1:-1:1, reg_param(i) = ratio*reg_param(i+1); end  % Vector of distances to straight line.  dists = zeros(npoints,1);  if isreal(beta), q = floor(m/2); else q = m-1; end  cp = zeros(q,npoints);  for i=1:npoints    [dists(i),cp(:,i)] = ncpfun(reg_param(i),s,beta(1:p),U(:,1:p));  end   % Plot selected NCPs.  stp = round(npoints/nNCPs);  plot(cp(:,1:stp:npoints)), hold on  % Find minimum.  [minG,minGi] = min(dists); % Initial guess.  reg_min = fminbnd('ncpfun',...    reg_param(min(minGi+1,npoints)),reg_param(max(minGi-1,1)),...    optimset('Display','off'),s,beta(1:p),U(:,1:p)); % Minimizer.  [dist,cp] = ncpfun(reg_min,s,beta(1:p),U(:,1:p));  plot(cp,'-r','linewidth',3), hold off  title(['Selected NCPs.  Most white for \lambda = ',num2str(reg_min)])elseif (strncmp(method,'tsvd',4) | strncmp(method,'tgsv',4))     % Matrix of residual vectors.  R = zeros(m,p-1);  R(:,p-1) = beta(p)*U(:,p);  for i=p-1:-1:2      R(:,i-1) = R(:,i) + beta(i)*U(:,i);  end    % Compute NCPs and distances.  if isreal(R), q = floor(m/2); else q = m-1; end  D = abs(fft(R)).^2; D = D(2:q+1,:);  v = (1:q)'/q; cp = zeros(q,p-1); dist = zeros(p-1,1);  for k=1:p-1    cp(:,k) = cumsum(D(:,k))/sum(D(:,k));    dist(k) = norm(cp(:,k)-v);  end  % Locate minimum and plot.  [dist_min,reg_min] = min(dist);  plot(cp), hold on  plot(1:q,cp(:,reg_min),'-r','linewidth',3), hold off  title(['Most white for k = ',num2str(reg_min)])    reg_param = (1:p-1)';  elseif (strncmp(method,'dsvd',4) | strncmp(method,'dgsv',4))  % Vector of regularization parameters.  reg_param = zeros(npoints,1);  reg_param(npoints) = max([s(p),s(1)*smin_ratio]);  ratio = (s(1)/reg_param(npoints))^(1/(npoints-1));  for i=npoints-1:-1:1, reg_param(i) = ratio*reg_param(i+1); end  % Vector of distances to straight line.  dists = zeros(npoints,1);  if isreal(beta), q = floor(m/2); else q = m-1; end  cp = zeros(q,npoints);  for i=1:npoints    [dists(i),cp(:,i)] = ncpfun(reg_param(i),s,beta(1:p),U(:,1:p),1);  end   % Plot selected NCPs.  stp = round(npoints/nNCPs);  plot(cp(:,1:stp:npoints)), hold on  % Find minimum, if requested.  [minG,minGi] = min(dists); % Initial guess.  reg_min = fminbnd('ncpfun',...    reg_param(min(minGi+1,npoints)),reg_param(max(minGi-1,1)),...    optimset('Display','off'),s,beta(1:p),U(:,1:p),1); % Minimizer.  [dist,cp] = ncpfun(reg_min,s,beta(1:p),U(:,1:p));  plot(cp,'-r','linewidth',3), hold off  title(['Selected NCPs.  Most white for \lambda = ',num2str(reg_min)])elseif (strncmp(method,'mtsv',4) | strncmp(method,'ttls',4))  error('The MTSVD and TTLS methods are not supported')else  error('Illegal method')end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -