⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 l_corner.m

📁 A comparison of methods for inverting helioseismic data
💻 M
字号:
function [reg_c,rho_c,eta_c] = l_corner(rho,eta,reg_param,U,s,b,method,M)%L_CORNER Locate the "corner" of the L-curve.%% [reg_c,rho_c,eta_c] =%        l_corner(rho,eta,reg_param)%        l_corner(rho,eta,reg_param,U,s,b,method,M)%        l_corner(rho,eta,reg_param,U,sm,b,method,M) ,  sm = [sigma,mu]%% Locates the "corner" of the L-curve in log-log scale.%% It is assumed that corresponding values of || A x - b ||, || L x ||,% and the regularization parameter are stored in the arrays rho, eta,% and reg_param, respectively (such as the output from routine l_curve).%% If nargin = 3, then no particular method is assumed, and if% nargin = 2 then it is issumed that reg_param = 1:length(rho).%% If nargin >= 6, then the following methods are allowed:%    method = 'Tikh'  : Tikhonov regularization%    method = 'tsvd'  : truncated SVD or GSVD%    method = 'dsvd'  : damped SVD or GSVD%    method = 'mtsvd' : modified TSVD,% and if no method is specified, 'Tikh' is default.  If the Spline Toolbox% is not available, then only 'Tikh' and 'dsvd' can be used.%% An eighth argument M specifies an upper bound for eta, below which% the corner should be found.% Per Christian Hansen, IMM, July 26, 2007.% Set default regularization method.if (nargin <= 3)  method = 'none';  if (nargin==2), reg_param = (1:length(rho))'; endelse  if (nargin==6), method = 'Tikh'; endend% Set this logical variable to 1 (true) if the corner algorithm% should always be used, even if the Spline Toolbox is available.alwayscorner = 0;% Set threshold for skipping very small singular values in the% analysis of a discrete L-curve.s_thr = eps;  % Neglect singular values less than s_thr.% Set default parameters for treatment of discrete L-curve.deg   = 2;  % Degree of local smooting polynomial.q     = 2;  % Half-width of local smoothing interval.order = 4;  % Order of fitting 2-D spline curve.% Initialization.if (length(rho) < order)  error('Too few data points for L-curve analysis')endif (nargin > 3)  [p,ps] = size(s); [m,n] = size(U);  beta = U'*b;  if (m>n), b0 = b - U*beta; end  if (ps==2)    s = s(p:-1:1,1)./s(p:-1:1,2);    beta = beta(p:-1:1);  end  xi = beta./s;end% Restrict the analysis of the L-curve according to M (if specified).if (nargin==8)  index = find(eta < M);  rho = rho(index); eta = eta(index); reg_param = reg_param(index);endif (strncmp(method,'Tikh',4) | strncmp(method,'tikh',4))  % The L-curve is differentiable; computation of curvature in  % log-log scale is easy.  % Compute g = - curvature of L-curve.  g = lcfun(reg_param,s,beta,xi);  % Locate the corner.  If the curvature is negative everywhere,  % then define the leftmost point of the L-curve as the corner.  [gmin,gi] = min(g);  reg_c = fminbnd('lcfun',...    reg_param(min(gi+1,length(g))),reg_param(max(gi-1,1)),...    optimset('Display','off'),s,beta,xi); % Minimizer.  kappa_max = - lcfun(reg_c,s,beta,xi); % Maximum curvature.  if (kappa_max < 0)    lr = length(rho);    reg_c = reg_param(lr); rho_c = rho(lr); eta_c = eta(lr);  else    f = (s.^2)./(s.^2 + reg_c^2);    eta_c = norm(f.*xi);    rho_c = norm((1-f).*beta);    if (m>n), rho_c = sqrt(rho_c^2 + norm(b0)^2); end  endelseif (strncmp(method,'tsvd',4) | strncmp(method,'tgsv',4) | ...        strncmp(method,'mtsv',4) | strncmp(method,'none',4))  % Use the adaptive pruning algorithm to find the corner, if the  % Spline Toolbox is not available.  if ~exist('splines','dir') | alwayscorner    %error('The Spline Toolbox in not available so l_corner cannot be used')    reg_c = corner(rho,eta);    rho_c = rho(reg_c);    eta_c = eta(reg_c);    return  end  % Othersise use local smoothing followed by fitting a 2-D spline curve  % to the smoothed discrete L-curve. Restrict the analysis of the L-curve  % according to s_thr.  if (nargin > 3)    if (nargin==8)       % In case the bound M is in action.      s = s(index,:);    end    index = find(s > s_thr);    rho = rho(index); eta = eta(index); reg_param = reg_param(index);  end  % Convert to logarithms.  lr = length(rho);  lrho = log(rho); leta = log(eta); slrho = lrho; sleta = leta;  % For all interior points k = q+1:length(rho)-q-1 on the discrete  % L-curve, perform local smoothing with a polynomial of degree deg  % to the points k-q:k+q.  v = (-q:q)'; A = zeros(2*q+1,deg+1); A(:,1) = ones(length(v),1);  for j = 2:deg+1, A(:,j) = A(:,j-1).*v; end  for k = q+1:lr-q-1    cr = A\lrho(k+v); slrho(k) = cr(1);    ce = A\leta(k+v); sleta(k) = ce(1);  end  % Fit a 2-D spline curve to the smoothed discrete L-curve.  sp = spmak((1:lr+order),[slrho';sleta']);  pp = ppbrk(sp2pp(sp),[4,lr+1]);  % Extract abscissa and ordinate splines and differentiate them.  % Compute as many function values as default in spleval.  P     = spleval(pp);  dpp   = fnder(pp);  D     = spleval(dpp); ddpp  = fnder(pp,2);  DD    = spleval(ddpp);  ppx   = P(1,:);       ppy   = P(2,:);  dppx  = D(1,:);       dppy  = D(2,:);  ddppx = DD(1,:);      ddppy = DD(2,:);  % Compute the corner of the discretized .spline curve via max. curvature.  % No need to refine this corner, since the final regularization  % parameter is discrete anyway.  % Define curvature = 0 where both dppx and dppy are zero.  k1    = dppx.*ddppy - ddppx.*dppy;  k2    = (dppx.^2 + dppy.^2).^(1.5);  I_nz  = find(k2 ~= 0);  kappa = zeros(1,length(dppx));  kappa(I_nz) = -k1(I_nz)./k2(I_nz);  [kmax,ikmax] = max(kappa);  x_corner = ppx(ikmax); y_corner = ppy(ikmax);  % Locate the point on the discrete L-curve which is closest to the  % corner of the spline curve.  Prefer a point below and to the  % left of the corner.  If the curvature is negative everywhere,  % then define the leftmost point of the L-curve as the corner.  if (kmax < 0)    reg_c = reg_param(lr); rho_c = rho(lr); eta_c = eta(lr);  else    index = find(lrho < x_corner & leta < y_corner);    if ~isempty(index)      [dummy,rpi] = min((lrho(index)-x_corner).^2 + (leta(index)-y_corner).^2);      rpi = index(rpi);    else      [dummy,rpi] = min((lrho-x_corner).^2 + (leta-y_corner).^2);    end    reg_c = reg_param(rpi); rho_c = rho(rpi); eta_c = eta(rpi);  endelseif (strncmp(method,'dsvd',4) | strncmp(method,'dgsv',4))  % The L-curve is differentiable; computation of curvature in  % log-log scale is easy.  % Compute g = - curvature of L-curve.  g = lcfun(reg_param,s,beta,xi,1);  % Locate the corner.  If the curvature is negative everywhere,  % then define the leftmost point of the L-curve as the corner.  [gmin,gi] = min(g);  reg_c = fminbnd('lcfun',...    reg_param(min(gi+1,length(g))),reg_param(max(gi-1,1)),...    optimset('Display','off'),s,beta,xi,1); % Minimizer.  kappa_max = - lcfun(reg_c,s,beta,xi,1); % Maximum curvature.  if (kappa_max < 0)    lr = length(rho);    reg_c = reg_param(lr); rho_c = rho(lr); eta_c = eta(lr);  else    f = s./(s + reg_c);    eta_c = norm(f.*xi);    rho_c = norm((1-f).*beta);    if (m>n), rho_c = sqrt(rho_c^2 + norm(b0)^2); end  endelse  error('Illegal method')end

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -