⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 base number systems.html

📁 1000 HOWTOs for various needs [WINDOWS]
💻 HTML
字号:
<HTML>

<TITLE>Base Number System's By Forbze</TITLE>

<Body BGCOLOR="#000000" text="#FF9900" link="#0099FF">

<PRE>           

<font color="#FF9900">



               :::::::::   ::::::::  :::::::::  :::::::::: 

               :+:    :+: :+:    :+: :+:    :+: :+:        

               +:+    +:+ +:+        +:+    +:+ +:+        

               +#++:++#+  +#++:++#++ +#++:++#:  :#::+::#   

               +#+    +#+        +#+ +#+    +#+ +#+        

               #+#    #+# #+#    #+# #+#    #+# #+#        

               #########   ########  ###    ### ###  

       

                           

                        <a href="http://blacksun.box.sk">http://blacksun.box.sk</a>

                     _______________________________

 ___________________I              Topic:           I_____________________

\                   I                               I                    /

 \     HTML,        I       Base Number Systems     I   Author:         /

 >     Forbze       I                               I                  < 

 /                  I_______________________________I   Forbze          \

/________________________>                    <__________________________\



</font>

</PRE>



<p align="left"> <font face="Verdana, Arial, Helvetica, sans-serif" size="1">Well 

  Base Number Systems are the whole entire system that our computers run on, Binary 

  is a Base System. In this case Base 2. <br>

  <br>

  Before the days of languages, such as C++, C, Visual Basic and so on, there 

  was actually Intelligent people slaving away at computers typing up endless 

  pages of machine code. If you want to know more about the history of Machine 

  code and etc. check out some my other tutorials for Blacksun. Well the point 

  im trying to make is that the average computer programmer, back then had done 

  Degrees in mathematics. 80% of the time the programmers had degrees anyway, 

  This degree in mathematics helped them understand the way a computer works, 

  eg. the electronic pulses caused by the computers output of 1's and 0's. This 

  being Binary.</font><br>

<br></p>

				

<p align="center">

<h2><b><font face="Verdana, Arial, Helvetica, sans-serif" size="2">The Language 

  of Numbers.</font></b></h2>

<p></p>

<font face="Verdana, Arial, Helvetica, sans-serif" size="1">At bottom, Computers 

understand only one language -- the binary code of ones and zero's that represent 

on-off electronic pulses. Because this code is so difficult for humans, programmers 

have built more concise ways of expressing the binary numbers that constitute, 

for example the contents of a computer's memory or the address in memory of each 

peice of data. T wo numbering systems that can serve as convenient short hand 

for the binary (base 2) are octal (base 8) and Hexidecimal (base 16). Hexidecimal 

is sometimes known as "Hex" by programmers. Becuase 8 is raised 2 to the third 

power ( 8 = 2 * 2 * 2) , one octal digit is the equivilant of three binary digits, 

similarly, one hexidecimal digit represents 4 binary digits ( 16 is raised to 

the forth power). The tables below list the decimal dumbers 0 through 16 and there 

binary, octal, hexidecimal equivalents. In each system, the value of a digit is 

determined by the value of its place column. The letters <i>A</i> through <i>F</i> 

in hexadecimal represents the 11th through 16th digits in that system.</font><br>

<br>

<p></p>

<p align="center"><IMG SRC="/pictures/bases.jpg" BORDER="0"></p>

<br>

<center>

  <u>

  <h1><font face="Verdana, Arial, Helvetica, sans-serif" size="3">The process 

    of Conversion</font></h1>

  </u> 

</center>

<br>

<h2><font face="Verdana, Arial, Helvetica, sans-serif" size="2"><b>Decimal to 

  Binary</b></font></h2>

<img src="/pictures/dec2bin.jpg" border="0"><br>

<font face="Verdana, Arial, Helvetica, sans-serif" size="1">Subtract the highest 

possible power of 2 from the decimal number - here, 4 from 5 - and continue subtracting 

the highest possible power from the remainder, marking a 1 in each binary place 

column where subtraction occurs and a 0 where it doesn't . Here. one 4, no 2 and 

one 1 gives binary 101.</font><br>

<h2><font face="Verdana, Arial, Helvetica, sans-serif" size="2"><b>Binary to Decimal</b></font></h2>

<img src="/pictures/bin2dec.jpg" border="0"><br>

<font face="Verdana, Arial, Helvetica, sans-serif" size="1">Add the values of 

all the binary places occupied by 1s. Here, to convert the 12- digit binary number 

100101101001, add the place values of 2048,256,64,32,8 and 1. The result is the 

decimal number 2409.<br>

</font> 

<h2><font face="Verdana, Arial, Helvetica, sans-serif" size="2"><b>Binary to Octal</b></font></h2>

<font face="Verdana, Arial, Helvetica, sans-serif" size="1"><img src="/pictures/bin2oct.jpg" border="0"><br>

Starting with the righmost digit, group the binary digits in threes, treating 

each three as a seperate binary number with the place values of 4,2 and 1. The 

sum of each of trio's place values equals one octal digit. Here, the sums of the 

values of each of the four groups ar 4,5, 5 and 1, making octal 4551.<br>

</font> 

<h2><font face="Verdana, Arial, Helvetica, sans-serif" size="2"><b>Binary to Hexidecimal</b></font></h2>

<p><font face="Verdana, Arial, Helvetica, sans-serif" size="1"><img src="/pictures/bin2hex.jpg" border="0"><br>

  Again from the right, group the binary digits in fours, treating each four as 

  1 binary number with the place values 8, 4, 2 and 1. The sum of each group's 

  place values equals one hexidecimal digit. Here, the sums of the three groups 

  are 9, 6 and 9, making hexidecimal 969. </font></p>

<p>&nbsp;</p>

<center>

  <h1><u><font face="Verdana, Arial, Helvetica, sans-serif" size="3">The Principles 

    Of Addition</font></u></h1>

</center>

<font face="Verdana, Arial, Helvetica, sans-serif" size="1"><br>

</font> 

<h2><font face="Verdana, Arial, Helvetica, sans-serif" size="2"><b>Addition in 

  Binary</b></font></h2>

<font face="Verdana, Arial, Helvetica, sans-serif" size="1"><img src="/pictures/addbin.jpg" border="0"><br>

Using the same rules as in decimal addition, start by adding the figures in the 

rightmost, or 1s column: 1 + 1. The result - 2 - is expressed in binary as 10 

(one - zero). Write down the 0 and carry the 1. In the 2s column, 1 + 1 again 

equals 2, or binary 10;write down the 0 and carry the 1 into the 4s column. The 

result is 100, the binary equivalent of decimal 4.<br>

</font> 

<h2><font face="Verdana, Arial, Helvetica, sans-serif" size="2"><b>Addition in 

  Octal</b></font></h2>

<font face="Verdana, Arial, Helvetica, sans-serif" size="1"><img src="/pictures/addoct.jpg" border="0"><br>

Adding the figuress in the 1s column - 7 + 1 - gives 8, expressed in the octal 

system as 10 (one - zero). As in binary addition, write down the 0 and carry the 

1. Next, add the figures in the 8s column, the sum of 6 and 1 is 7. The result 

is Octal 70 - the equivalant of binary 111000, or decimal 56.<br>

</font> 

<h2><font face="Verdana, Arial, Helvetica, sans-serif" size="2"><b>Addition in 

  Hexidecimal</b></font></h2>

<font face="Verdana, Arial, Helvetica, sans-serif" size="1"><img src="/pictures/addhex.jpg" border="0"><br>

Adding the figures in the 1s column - 7 + 9 - Gives 16, the base of the hexidecimal 

system, expressed as 10. Write down the 0 and carry the 1. In the 16s coloumn, 

add 1 to the D (13 in decimal). D plus 1 is E (14 in decimal). The result is E0 

(E-Zero), Hexidecimal shorthand for binary 11100000, or decimal 224 </font> 

<p><font face="Verdana, Arial, Helvetica, sans-serif" size="1"><a href="http://blacksun.box.sk/tutorials.html">Back</a> 

  To BlackSun Reseach Facility Tutorials.</font></p>

</BODY>

</HTML>

 

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -