📄 rpng2-x.c
字号:
/*--------------------------------------------------------------------------- Wait for first Expose event to do any drawing, then flush and return. ---------------------------------------------------------------------------*/ do XNextEvent(display, &e); while (e.type != Expose || e.xexpose.count); XFlush(display); return 0;} /* end function rpng2_x_create_window() */static int rpng2_x_load_bg_image(void){ uch *src; char *dest; uch r1, r2, g1, g2, b1, b2; uch r1_inv, r2_inv, g1_inv, g2_inv, b1_inv, b2_inv; int k, hmax, max; int xidx, yidx, yidx_max; int even_odd_vert, even_odd_horiz, even_odd; int invert_gradient2 = (bg[pat].type & 0x08); int invert_column; int ximage_rowbytes = ximage->bytes_per_line; ulg i, row; ulg pixel;/*--------------------------------------------------------------------------- Allocate buffer for fake background image to be used with transparent images; if this fails, revert to plain background color. ---------------------------------------------------------------------------*/ bg_rowbytes = 3 * rpng2_info.width; bg_data = (uch *)malloc(bg_rowbytes * rpng2_info.height); if (!bg_data) { fprintf(stderr, PROGNAME ": unable to allocate memory for background image\n"); bg_image = 0; return 1; } bgscale = (pat == 0)? 8 : bgscale_default; yidx_max = bgscale - 1;/*--------------------------------------------------------------------------- Vertical gradients (ramps) in NxN squares, alternating direction and colors (N == bgscale). ---------------------------------------------------------------------------*/ if ((bg[pat].type & 0x07) == 0) { uch r1_min = rgb[bg[pat].rgb1_min].r; uch g1_min = rgb[bg[pat].rgb1_min].g; uch b1_min = rgb[bg[pat].rgb1_min].b; uch r2_min = rgb[bg[pat].rgb2_min].r; uch g2_min = rgb[bg[pat].rgb2_min].g; uch b2_min = rgb[bg[pat].rgb2_min].b; int r1_diff = rgb[bg[pat].rgb1_max].r - r1_min; int g1_diff = rgb[bg[pat].rgb1_max].g - g1_min; int b1_diff = rgb[bg[pat].rgb1_max].b - b1_min; int r2_diff = rgb[bg[pat].rgb2_max].r - r2_min; int g2_diff = rgb[bg[pat].rgb2_max].g - g2_min; int b2_diff = rgb[bg[pat].rgb2_max].b - b2_min; for (row = 0; row < rpng2_info.height; ++row) { yidx = (int)(row % bgscale); even_odd_vert = (int)((row / bgscale) & 1); r1 = r1_min + (r1_diff * yidx) / yidx_max; g1 = g1_min + (g1_diff * yidx) / yidx_max; b1 = b1_min + (b1_diff * yidx) / yidx_max; r1_inv = r1_min + (r1_diff * (yidx_max-yidx)) / yidx_max; g1_inv = g1_min + (g1_diff * (yidx_max-yidx)) / yidx_max; b1_inv = b1_min + (b1_diff * (yidx_max-yidx)) / yidx_max; r2 = r2_min + (r2_diff * yidx) / yidx_max; g2 = g2_min + (g2_diff * yidx) / yidx_max; b2 = b2_min + (b2_diff * yidx) / yidx_max; r2_inv = r2_min + (r2_diff * (yidx_max-yidx)) / yidx_max; g2_inv = g2_min + (g2_diff * (yidx_max-yidx)) / yidx_max; b2_inv = b2_min + (b2_diff * (yidx_max-yidx)) / yidx_max; dest = (char *)bg_data + row*bg_rowbytes; for (i = 0; i < rpng2_info.width; ++i) { even_odd_horiz = (int)((i / bgscale) & 1); even_odd = even_odd_vert ^ even_odd_horiz; invert_column = (even_odd_horiz && (bg[pat].type & 0x10)); if (even_odd == 0) { /* gradient #1 */ if (invert_column) { *dest++ = r1_inv; *dest++ = g1_inv; *dest++ = b1_inv; } else { *dest++ = r1; *dest++ = g1; *dest++ = b1; } } else { /* gradient #2 */ if ((invert_column && invert_gradient2) || (!invert_column && !invert_gradient2)) { *dest++ = r2; /* not inverted or */ *dest++ = g2; /* doubly inverted */ *dest++ = b2; } else { *dest++ = r2_inv; *dest++ = g2_inv; /* singly inverted */ *dest++ = b2_inv; } } } }/*--------------------------------------------------------------------------- Soft gradient-diamonds with scale = bgscale. Code contributed by Adam M. Costello. ---------------------------------------------------------------------------*/ } else if ((bg[pat].type & 0x07) == 1) { hmax = (bgscale-1)/2; /* half the max weight of a color */ max = 2*hmax; /* the max weight of a color */ r1 = rgb[bg[pat].rgb1_max].r; g1 = rgb[bg[pat].rgb1_max].g; b1 = rgb[bg[pat].rgb1_max].b; r2 = rgb[bg[pat].rgb2_max].r; g2 = rgb[bg[pat].rgb2_max].g; b2 = rgb[bg[pat].rgb2_max].b; for (row = 0; row < rpng2_info.height; ++row) { yidx = (int)(row % bgscale); if (yidx > hmax) yidx = bgscale-1 - yidx; dest = (char *)bg_data + row*bg_rowbytes; for (i = 0; i < rpng2_info.width; ++i) { xidx = (int)(i % bgscale); if (xidx > hmax) xidx = bgscale-1 - xidx; k = xidx + yidx; *dest++ = (k*r1 + (max-k)*r2) / max; *dest++ = (k*g1 + (max-k)*g2) / max; *dest++ = (k*b1 + (max-k)*b2) / max; } }/*--------------------------------------------------------------------------- Radial "starburst" with azimuthal sinusoids; [eventually number of sinu- soids will equal bgscale?]. This one is slow but very cool. Code con- tributed by Pieter S. van der Meulen (originally in Smalltalk). ---------------------------------------------------------------------------*/ } else if ((bg[pat].type & 0x07) == 2) { uch ch; int ii, x, y, hw, hh, grayspot; double freq, rotate, saturate, gray, intensity; double angle=0.0, aoffset=0.0, maxDist, dist; double red=0.0, green=0.0, blue=0.0, hue, s, v, f, p, q, t; fprintf(stderr, "%s: computing radial background...", PROGNAME); fflush(stderr); hh = (int)(rpng2_info.height / 2); hw = (int)(rpng2_info.width / 2); /* variables for radial waves: * aoffset: number of degrees to rotate hue [CURRENTLY NOT USED] * freq: number of color beams originating from the center * grayspot: size of the graying center area (anti-alias) * rotate: rotation of the beams as a function of radius * saturate: saturation of beams' shape azimuthally */ angle = CLIP(angle, 0.0, 360.0); grayspot = CLIP(bg[pat].bg_gray, 1, (hh + hw)); freq = MAX((double)bg[pat].bg_freq, 0.0); saturate = (double)bg[pat].bg_bsat * 0.1; rotate = (double)bg[pat].bg_brot * 0.1; gray = 0.0; intensity = 0.0; maxDist = (double)((hw*hw) + (hh*hh)); for (row = 0; row < rpng2_info.height; ++row) { y = (int)(row - hh); dest = (char *)bg_data + row*bg_rowbytes; for (i = 0; i < rpng2_info.width; ++i) { x = (int)(i - hw); angle = (x == 0)? PI_2 : atan((double)y / (double)x); gray = (double)MAX(ABS(y), ABS(x)) / grayspot; gray = MIN(1.0, gray); dist = (double)((x*x) + (y*y)) / maxDist; intensity = cos((angle+(rotate*dist*PI)) * freq) * gray * saturate; intensity = (MAX(MIN(intensity,1.0),-1.0) + 1.0) * 0.5; hue = (angle + PI) * INV_PI_360 + aoffset; s = gray * ((double)(ABS(x)+ABS(y)) / (double)(hw + hh)); s = MIN(MAX(s,0.0), 1.0); v = MIN(MAX(intensity,0.0), 1.0); if (s == 0.0) { ch = (uch)(v * 255.0); *dest++ = ch; *dest++ = ch; *dest++ = ch; } else { if ((hue < 0.0) || (hue >= 360.0)) hue -= (((int)(hue / 360.0)) * 360.0); hue /= 60.0; ii = (int)hue; f = hue - (double)ii; p = (1.0 - s) * v; q = (1.0 - (s * f)) * v; t = (1.0 - (s * (1.0 - f))) * v; if (ii == 0) { red = v; green = t; blue = p; } else if (ii == 1) { red = q; green = v; blue = p; } else if (ii == 2) { red = p; green = v; blue = t; } else if (ii == 3) { red = p; green = q; blue = v; } else if (ii == 4) { red = t; green = p; blue = v; } else if (ii == 5) { red = v; green = p; blue = q; } *dest++ = (uch)(red * 255.0); *dest++ = (uch)(green * 255.0); *dest++ = (uch)(blue * 255.0); } } } fprintf(stderr, "done.\n"); fflush(stderr); }/*--------------------------------------------------------------------------- Blast background image to display buffer before beginning PNG decode. ---------------------------------------------------------------------------*/ if (depth == 24 || depth == 32) { ulg red, green, blue; int bpp = ximage->bits_per_pixel; for (row = 0; row < rpng2_info.height; ++row) { src = bg_data + row*bg_rowbytes; dest = ximage->data + row*ximage_rowbytes; if (bpp == 32) { /* slightly optimized version */ for (i = rpng2_info.width; i > 0; --i) { red = *src++; green = *src++; blue = *src++; pixel = (red << RShift) | (green << GShift) | (blue << BShift); /* recall that we set ximage->byte_order = MSBFirst above */ *dest++ = (char)((pixel >> 24) & 0xff); *dest++ = (char)((pixel >> 16) & 0xff); *dest++ = (char)((pixel >> 8) & 0xff); *dest++ = (char)( pixel & 0xff); } } else { for (i = rpng2_info.width; i > 0; --i) { red = *src++; green = *src++; blue = *src++; pixel = (red << RShift) | (green << GShift) | (blue << BShift); /* recall that we set ximage->byte_order = MSBFirst above */ /* GRR BUG? this assumes bpp == 24 & bits are packed low */ /* (probably need to use RShift, RMask, etc.) */ *dest++ = (char)((pixel >> 16) & 0xff); *dest++ = (char)((pixel >> 8) & 0xff); *dest++ = (char)( pixel & 0xff); } } } } else if (depth == 16) { ush red, green, blue; for (row = 0; row < rpng2_info.height; ++row) { src = bg_data + row*bg_rowbytes; dest = ximage->data + row*ximage_rowbytes; for (i = rpng2_info.width; i > 0; --i) { red = ((ush)(*src) << 8); ++src; green = ((ush)(*src) << 8); ++src; blue = ((ush)(*src) << 8); ++src; pixel = ((red >> RShift) & RMask) | ((green >> GShift) & GMask) | ((blue >> BShift) & BMask); /* recall that we set ximage->byte_order = MSBFirst above */ *dest++ = (char)((pixel >> 8) & 0xff); *dest++ = (char)( pixel & 0xff); } } } else /* depth == 8 */ { /* GRR: add 8-bit support */ } XPutImage(display, window, gc, ximage, 0, 0, 0, 0, rpng2_info.width, rpng2_info.height); return 0;} /* end function rpng2_x_load_bg_image() */static void rpng2_x_display_row(ulg row){ uch bg_red = rpng2_info.bg_red; uch bg_green = rpng2_info.bg_green; uch bg_blue = rpng2_info.bg_blue; uch *src, *src2=NULL; char *dest; uch r, g, b, a; int ximage_rowbytes = ximage->bytes_per_line; ulg i, pixel; static int rows=0, prevpass=(-1); static ulg firstrow;/*--------------------------------------------------------------------------- rows and firstrow simply track how many rows (and which ones) have not yet been displayed; alternatively, we could call XPutImage() for every row and not bother with the records-keeping. ---------------------------------------------------------------------------*/ Trace((stderr, "beginning rpng2_x_display_row()\n")) if (rpng2_info.pass != prevpass) { if (pause_after_pass && rpng2_info.pass > 0) { XEvent e;
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -