⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 ldc.m

📁 模式识别 MATLAB 的工具箱,比较实用,包括SVM,ICA,PCA,NN等等模式识别算法.
💻 M
字号:
%LDC Linear Discriminant Classifier% % 	W = ldc(A,r,s)% % Computation of a linear discriminant between the classes of the % dataset A assuming normal densities with equal covariance % matrices. The joint covariance matrix is the weighted (by apriori % probabilities) average of the class covariance matrices.% % r and s (0 <= r,s <=1) are regularization parameters used for % finding the covariance matrix by % 	G = inv((1-r-s)*G+r*diag(diag(G)))+% 		s*mean(diag(G))*eye(size(G,1))% So,	r = 0 : (default) no regularization% 	r = 1 : don't use data% % Default: r = 0, s= 0.%% The classification A*W is computed by normal_map. See there for details.% % See also mappings, datasets, nmc, fisherc, qdc, uqc% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsfunction W = ldc(a,r,s)if nargin < 3, s = 0; endif nargin < 2, r = 0; endif nargin < 1 | isempty(a)	W = mapping('ldc',{r,s});	returnend[nlab,lablist,m,k,c,p,fl,imheight] = dataset(a);if min(sum(expandd(nlab,c),1)) < 2        error('Classes should contain more than one vector')end[U,G] = meancov(a);G = reshape(sum(reshape(G,k*k,c)*p,2),k,k);G = (1-r-s)*G + r * diag(diag(G)) + s*mean(diag(G))*eye(size(G,1));W = mapping('normal_map',{U,G,p},getlab(U),k,c,1);return

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -