⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 meanc.m

📁 模式识别 MATLAB 的工具箱,比较实用,包括SVM,ICA,PCA,NN等等模式识别算法.
💻 M
字号:
%MEANC Averaging combining classifier% % 	W = meanc(V)% 	W = V*meanc% % If V = [V1,V2,V3, ... ] is a set of classifiers trained on the % same classes and W is the mean combiner: it selects the class with % the mean of the outputs of the input classifiers. This might also % be used as A*[V1,V2,V3]*meanc in which A is a dataset to be % classified.% % If it is desired to operate on posterior probabilities then the % input classifiers should be extended like V1 = classc(V1).%% If all input classifiers are k to 1 affine mappings, their% coefficients are averaged.% % See also mappings, datasets, maxc, prodc, minc, majorc, medianc% Copyright: R.P.W. Duin, duin@ph.tn.tudelft.nl% Faculty of Applied Physics, Delft University of Technology% P.O. Box 5046, 2600 GA Delft, The Netherlandsfunction v = meanc(a)if nargin == 0	v = mapping('meanc','combiner');elseif nargin == 1 & isa(a,'mapping')	[d,lablist,type,k,c] = mapping(a);	[nclass,classlist] = renumlab(lablist);	if ~strcmp(type,'parallel') &  ~strcmp(type,'stacked')		v = a*mapping('meanc',NaN,classlist,c,size(classlist,1));		return	end	ld = length(d); typd = zeros(1,ld);	ww = zeros(k+1,ld);					% Average linear affine mappings	for i=1:ld		ti = strcmp(getmap(d{i}),'affine') & ~isclassifier(d{i});		ti = ti & size(d{i},2) == 2 & ~isclassifier(a);		if ti, ww(:,i) = +d{i}; else break; end		typd(i) = ti;	end	if all(typd)		v = mapping('affine',mean(ww,2),classlist,k,1);	else		v = a*mapping('meanc',NaN,classlist,c,size(classlist,1));	endelse	[nlab,lablist,m,ka,ca,prob,featlist,imheight] = dataset(a);	[nclass,classlist] = renumlab(featlist);	c = size(classlist,1);	v = dataset(zeros(m,c),getlab(a),classlist,prob,lablist,imheight);	for j=1:c		J = find(nclass==j);		v(:,j) = mean(a(:,J),2);	endend

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -