📄 patch.cc
字号:
* and determine if patch needs to be subdivided *-------------------------------------------------------------------------- */voidPatch::getstepsize( void ){ pspec[0].minstepsize = pspec[1].minstepsize = 0; pspec[0].needsSubdivision = pspec[1].needsSubdivision = 0; if( mapdesc->isConstantSampling() ) { // fixed number of samples per patch in each direction // maxsrate is number of s samples per patch // maxtrate is number of t samples per patch pspec[0].getstepsize( mapdesc->maxsrate ); pspec[1].getstepsize( mapdesc->maxtrate ); } else if( mapdesc->isDomainSampling() ) { // maxsrate is number of s samples per unit s length of domain // maxtrate is number of t samples per unit t length of domain pspec[0].getstepsize( mapdesc->maxsrate * pspec[0].range[2] ); pspec[1].getstepsize( mapdesc->maxtrate * pspec[1].range[2] ); } else if( ! needsSampling ) { pspec[0].singleStep(); pspec[1].singleStep(); } else { // upper bound on path length between sample points REAL tmp[MAXORDER][MAXORDER][MAXCOORDS]; const int trstride = sizeof(tmp[0]) / sizeof(REAL); const int tcstride = sizeof(tmp[0][0]) / sizeof(REAL); assert( pspec[0].order <= MAXORDER ); /* points have been transformed, therefore they are homogeneous */ int val = mapdesc->project( spts, pspec[0].stride, pspec[1].stride, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order ); if( val == 0 ) { // control points cross infinity, therefore partials are undefined pspec[0].getstepsize( mapdesc->maxsrate ); pspec[1].getstepsize( mapdesc->maxtrate ); } else { REAL t1 = mapdesc->getProperty( N_PIXEL_TOLERANCE );// REAL t2 = mapdesc->getProperty( N_ERROR_TOLERANCE ); pspec[0].minstepsize = ( mapdesc->maxsrate > 0.0 ) ? (pspec[0].range[2] / mapdesc->maxsrate) : 0.0; pspec[1].minstepsize = ( mapdesc->maxtrate > 0.0 ) ? (pspec[1].range[2] / mapdesc->maxtrate) : 0.0; if( mapdesc->isParametricDistanceSampling() || mapdesc->isObjectSpaceParaSampling() ) { REAL t2; t2 = mapdesc->getProperty( N_ERROR_TOLERANCE ); // t2 is upper bound on the distance between surface and tessellant REAL ssv[2], ttv[2]; REAL ss = mapdesc->calcPartialVelocity( ssv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 2, 0, pspec[0].range[2], pspec[1].range[2], 0 ); REAL st = mapdesc->calcPartialVelocity( 0, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 1, pspec[0].range[2], pspec[1].range[2], -1 ); REAL tt = mapdesc->calcPartialVelocity( ttv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 2, pspec[0].range[2], pspec[1].range[2], 1 ); //make sure that ss st and tt are nonnegative: if(ss <0) ss = -ss; if(st <0) st = -st; if(tt <0) tt = -tt; if( ss != 0.0 && tt != 0.0 ) { /* printf( "ssv[0] %g ssv[1] %g ttv[0] %g ttv[1] %g\n", ssv[0], ssv[1], ttv[0], ttv[1] ); */ REAL ttq = sqrtf( (float) ss ); REAL ssq = sqrtf( (float) tt ); REAL ds = sqrtf( 4 * t2 * ttq / ( ss * ttq + st * ssq ) ); REAL dt = sqrtf( 4 * t2 * ssq / ( tt * ssq + st * ttq ) ); pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2]; REAL scutoff = 2.0 * t2 / ( pspec[0].range[2] * pspec[0].range[2]); pspec[0].sidestep[0] = (ssv[0] > scutoff) ? sqrtf( 2.0 * t2 / ssv[0] ) : pspec[0].range[2]; pspec[0].sidestep[1] = (ssv[1] > scutoff) ? sqrtf( 2.0 * t2 / ssv[1] ) : pspec[0].range[2]; pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2]; REAL tcutoff = 2.0 * t2 / ( pspec[1].range[2] * pspec[1].range[2]); pspec[1].sidestep[0] = (ttv[0] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[0] ) : pspec[1].range[2]; pspec[1].sidestep[1] = (ttv[1] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[1] ) : pspec[1].range[2]; } else if( ss != 0.0 ) { REAL x = pspec[1].range[2] * st; REAL ds = ( sqrtf( x * x + 8.0 * t2 * ss ) - x ) / ss; pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2]; REAL scutoff = 2.0 * t2 / ( pspec[0].range[2] * pspec[0].range[2]); pspec[0].sidestep[0] = (ssv[0] > scutoff) ? sqrtf( 2.0 * t2 / ssv[0] ) : pspec[0].range[2]; pspec[0].sidestep[1] = (ssv[1] > scutoff) ? sqrtf( 2.0 * t2 / ssv[1] ) : pspec[0].range[2]; pspec[1].singleStep(); } else if( tt != 0.0 ) { REAL x = pspec[0].range[2] * st; REAL dt = ( sqrtf( x * x + 8.0 * t2 * tt ) - x ) / tt; pspec[0].singleStep(); REAL tcutoff = 2.0 * t2 / ( pspec[1].range[2] * pspec[1].range[2]); pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2]; pspec[1].sidestep[0] = (ttv[0] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[0] ) : pspec[1].range[2]; pspec[1].sidestep[1] = (ttv[1] > tcutoff) ? sqrtf( 2.0 * t2 / ttv[1] ) : pspec[1].range[2]; } else { if( 4.0 * t2 > st * pspec[0].range[2] * pspec[1].range[2] ) { pspec[0].singleStep(); pspec[1].singleStep(); } else { REAL area = 4.0 * t2 / st; REAL ds = sqrtf( area * pspec[0].range[2] / pspec[1].range[2] ); REAL dt = sqrtf( area * pspec[1].range[2] / pspec[0].range[2] ); pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2]; pspec[0].sidestep[0] = pspec[0].range[2]; pspec[0].sidestep[1] = pspec[0].range[2]; pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2]; pspec[1].sidestep[0] = pspec[1].range[2]; pspec[1].sidestep[1] = pspec[1].range[2]; } } } else if( mapdesc->isPathLengthSampling() || mapdesc->isObjectSpacePathSampling()) { // t1 is upper bound on path length REAL msv[2], mtv[2]; REAL ms = mapdesc->calcPartialVelocity( msv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 0, pspec[0].range[2], pspec[1].range[2], 0 ); REAL mt = mapdesc->calcPartialVelocity( mtv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 1, pspec[0].range[2], pspec[1].range[2], 1 ); REAL side_scale = 1.0; if( ms != 0.0 ) { if( mt != 0.0 ) {/* REAL d = t1 / ( ms * ms + mt * mt );*//* REAL ds = mt * d;*/ REAL ds = t1 / (2.0*ms);/* REAL dt = ms * d;*/ REAL dt = t1 / (2.0*mt); pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2]; pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t1 ) ? (side_scale* t1 / msv[0]) : pspec[0].range[2]; pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t1 ) ? (side_scale* t1 / msv[1]) : pspec[0].range[2]; pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2]; pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t1 ) ? (side_scale*t1 / mtv[0]) : pspec[1].range[2]; pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t1 ) ? (side_scale*t1 / mtv[1]) : pspec[1].range[2]; } else { pspec[0].stepsize = ( t1 < ms * pspec[0].range[2] ) ? (t1 / ms) : pspec[0].range[2]; pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t1 ) ? (t1 / msv[0]) : pspec[0].range[2]; pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t1 ) ? (t1 / msv[1]) : pspec[0].range[2]; pspec[1].singleStep(); } } else { if( mt != 0.0 ) { pspec[0].singleStep(); pspec[1].stepsize = ( t1 < mt * pspec[1].range[2] ) ? (t1 / mt) : pspec[1].range[2]; pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t1 ) ? (t1 / mtv[0]) : pspec[1].range[2]; pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t1 ) ? (t1 / mtv[1]) : pspec[1].range[2]; } else { pspec[0].singleStep(); pspec[1].singleStep(); } } } else if( mapdesc->isSurfaceAreaSampling() ) { // t is the square root of area/* REAL msv[2], mtv[2]; REAL ms = mapdesc->calcPartialVelocity( msv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 1, 0, pspec[0].range[2], pspec[1].range[2], 0 ); REAL mt = mapdesc->calcPartialVelocity( mtv, &tmp[0][0][0], trstride, tcstride, pspec[0].order, pspec[1].order, 0, 1, pspec[0].range[2], pspec[1].range[2], 1 ); if( ms != 0.0 && mt != 0.0 ) { REAL d = 1.0 / (ms * mt); t *= M_SQRT2; REAL ds = t * sqrtf( d * pspec[0].range[2] / pspec[1].range[2] ); REAL dt = t * sqrtf( d * pspec[1].range[2] / pspec[0].range[2] ); pspec[0].stepsize = ( ds < pspec[0].range[2] ) ? ds : pspec[0].range[2]; pspec[0].sidestep[0] = ( msv[0] * pspec[0].range[2] > t ) ? (t / msv[0]) : pspec[0].range[2]; pspec[0].sidestep[1] = ( msv[1] * pspec[0].range[2] > t ) ? (t / msv[1]) : pspec[0].range[2]; pspec[1].stepsize = ( dt < pspec[1].range[2] ) ? dt : pspec[1].range[2]; pspec[1].sidestep[0] = ( mtv[0] * pspec[1].range[2] > t ) ? (t / mtv[0]) : pspec[1].range[2]; pspec[1].sidestep[1] = ( mtv[1] * pspec[1].range[2] > t ) ? (t / mtv[1]) : pspec[1].range[2]; } else { pspec[0].singleStep(); pspec[1].singleStep(); }*/ } else { pspec[0].singleStep(); pspec[1].singleStep(); } } }#ifdef DEBUG _glu_dprintf( "sidesteps %g %g %g %g, stepsize %g %g\n", pspec[0].sidestep[0], pspec[0].sidestep[1], pspec[1].sidestep[0], pspec[1].sidestep[1], pspec[0].stepsize, pspec[1].stepsize );#endif if( mapdesc->minsavings != N_NOSAVINGSSUBDIVISION ) { REAL savings = 1./(pspec[0].stepsize * pspec[1].stepsize) ; savings-= (2./( pspec[0].sidestep[0] + pspec[0].sidestep[1] )) * (2./( pspec[1].sidestep[0] + pspec[1].sidestep[1] )); savings *= pspec[0].range[2] * pspec[1].range[2]; if( savings > mapdesc->minsavings ) { pspec[0].needsSubdivision = pspec[1].needsSubdivision = 1; } } if( pspec[0].stepsize < pspec[0].minstepsize ) pspec[0].needsSubdivision = 1; if( pspec[1].stepsize < pspec[1].minstepsize ) pspec[1].needsSubdivision = 1; needsSampling = (needsSampling ? needsSamplingSubdivision() : 0);}voidPatchspec::singleStep(){ stepsize = sidestep[0] = sidestep[1] = glu_abs(range[2]);}void Patchspec::getstepsize( REAL max ) // max is number of samples for entire patch{ stepsize = ( max >= 1.0 ) ? range[2] / max : range[2]; if (stepsize < 0.0) { stepsize = -stepsize; } sidestep[0] = sidestep[1] = minstepsize = stepsize;}intPatch::needsSamplingSubdivision( void ){ return (pspec[0].needsSubdivision || pspec[1].needsSubdivision) ? 1 : 0;}intPatch::needsNonSamplingSubdivision( void ){ return notInBbox;}intPatch::needsSubdivision( int param ){ return pspec[param].needsSubdivision;}intPatch::cullCheck( void ){ if( cullval == CULL_ACCEPT ) cullval = mapdesc->cullCheck( cpts, pspec[0].order, pspec[0].stride, pspec[1].order, pspec[1].stride ); return cullval;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -