⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 partitiony.cc

📁 Mesa is an open-source implementation of the OpenGL specification - a system for rendering interacti
💻 CC
📖 第 1 页 / 共 2 页
字号:
	  index++;	}    }  return index;}/*for debug only*/	  directedLine** DBGfindDiagonals(directedLine *polygons, Int& num_diagonals){  Int total_num_edges = 0;  directedLine** array = polygons->toArrayAllPolygons(total_num_edges);  quicksort( (void**)array, 0, total_num_edges-1, (Int (*)(void*, void*)) compInY);  sweepRange** ranges = (sweepRange**) malloc(sizeof(sweepRange*) * total_num_edges);  assert(ranges);  sweepY(total_num_edges, array, ranges); directedLine** diagonal_vertices = (directedLine**) malloc(sizeof(directedLine*) * total_num_edges);  assert(diagonal_vertices);  findDiagonals(total_num_edges, array, ranges, num_diagonals, diagonal_vertices);  num_diagonals=deleteRepeatDiagonals(num_diagonals, diagonal_vertices, diagonal_vertices);  return diagonal_vertices;}/*partition into Y-monotone polygons*/directedLine* partitionY(directedLine *polygons, sampledLine **retSampledLines){  Int total_num_edges = 0;  directedLine** array = polygons->toArrayAllPolygons(total_num_edges);  quicksort( (void**)array, 0, total_num_edges-1, (Int (*)(void*, void*)) compInY);  sweepRange** ranges = (sweepRange**) malloc(sizeof(sweepRange*) * (total_num_edges));  assert(ranges);  sweepY(total_num_edges, array, ranges);  /*the diagonal vertices are stored as:   *v0-v1: 1st diagonal   *v2-v3: 2nd diagonal   *v5-v5: 3rd diagonal   *...   */  Int num_diagonals;  /*number diagonals is < total_num_edges*total_num_edges*/  directedLine** diagonal_vertices = (directedLine**) malloc(sizeof(directedLine*) * total_num_edges*2/*total_num_edges*/);  assert(diagonal_vertices);  findDiagonals(total_num_edges, array, ranges, num_diagonals, diagonal_vertices);  directedLine* ret_polygons = polygons;  sampledLine* newSampledLines = NULL;  Int i,k;num_diagonals=deleteRepeatDiagonals(num_diagonals, diagonal_vertices, diagonal_vertices);  Int *removedDiagonals=(Int*)malloc(sizeof(Int) * num_diagonals);  for(i=0; i<num_diagonals; i++)    removedDiagonals[i] = 0;  for(i=0,k=0; i<num_diagonals; i++,k+=2)    {      directedLine* v1=diagonal_vertices[k];      directedLine* v2=diagonal_vertices[k+1];      directedLine* ret_p1;      directedLine* ret_p2;            /*we ahve to determine whether v1 and v2 belong to the same polygon before       *their structure are modified by connectDiagonal().       *//*      directedLine *root1 = v1->findRoot();      directedLine *root2 = v2->findRoot();      assert(root1);            assert(root2);*/directedLine*  root1 = v1->rootLinkFindRoot();directedLine*  root2 = v2->rootLinkFindRoot();      if(root1 != root2)	{	  removedDiagonals[i] = 1;	  sampledLine* generatedLine;	  v1->connectDiagonal(v1,v2, &ret_p1, &ret_p2, &generatedLine, ret_polygons);	  newSampledLines = generatedLine->insert(newSampledLines);/*	  ret_polygons = ret_polygons->cutoffPolygon(root1);	  ret_polygons = ret_polygons->cutoffPolygon(root2);	  ret_polygons = ret_p1->insertPolygon(ret_polygons);root1->rootLinkSet(ret_p1);root2->rootLinkSet(ret_p1);ret_p1->rootLinkSet(NULL);ret_p2->rootLinkSet(ret_p1);*/	  ret_polygons = ret_polygons->cutoffPolygon(root2);root2->rootLinkSet(root1);ret_p1->rootLinkSet(root1);ret_p2->rootLinkSet(root1);       /*now that we have connected the diagonal v1 and v2,         *we have to check those unprocessed diagonals which         *have v1 or v2 as an end point. Notice that the head of v1        *has the same coodinates as the head of v2->prev, and the head of        *v2 has the same coordinate as the head of v1->prev.         *Suppose these is a diagonal (v1, x). If (v1,x) is still a valid        *diagonal, then x should be on the left hand side of the directed line:        *v1->prev->head -- v1->head -- v1->tail. Otherwise, (v1,x) should be          *replaced by (v2->prev, x), that is, x is on the left of         * v2->prev->prev->head, v2->prev->head, v2->prev->tail.        */        Int ii, kk;        for(ii=0, kk=0; ii<num_diagonals; ii++, kk+=2)	  if( removedDiagonals[ii]==0)	    {	      directedLine* d1=diagonal_vertices[kk];	      directedLine* d2=diagonal_vertices[kk+1];	      /*check d1, and replace diagonal_vertices[kk] if necessary*/	      if(d1 == v1) {		/*check if d2 is to left of v1->prev->head:v1->head:v1->tail*/		if(! pointLeft2Lines(v1->getPrev()->head(), 				     v1->head(), v1->tail(), d2->head()))		  {/*		    assert(pointLeft2Lines(v2->getPrev()->getPrev()->head(),					   v2->getPrev()->head(), 					   v2->getPrev()->tail(), d2->head()));*/		    diagonal_vertices[kk] = v2->getPrev();		  }	      }	      if(d1 == v2) {		/*check if d2 is to left of v2->prev->head:v2->head:v2->tail*/		if(! pointLeft2Lines(v2->getPrev()->head(),				     v2->head(), v2->tail(), d2->head()))		  {/*		    assert(pointLeft2Lines(v1->getPrev()->getPrev()->head(),					   v1->getPrev()->head(),					   v1->getPrev()->tail(), d2->head()));*/		    diagonal_vertices[kk] = v1->getPrev();		  }	      }	      /*check d2 and replace diagonal_vertices[k+1] if necessary*/	      if(d2 == v1) {		/*check if d1 is to left of v1->prev->head:v1->head:v1->tail*/		if(! pointLeft2Lines(v1->getPrev()->head(), 				     v1->head(), v1->tail(), d1->head()))		  {/*		    assert(pointLeft2Lines(v2->getPrev()->getPrev()->head(),					   v2->getPrev()->head(), 					   v2->getPrev()->tail(), d1->head()));*/		    diagonal_vertices[kk+1] = v2->getPrev();		  }	      }	      if(d2 == v2) {		/*check if d1 is to left of v2->prev->head:v2->head:v2->tail*/		if(! pointLeft2Lines(v2->getPrev()->head(),				     v2->head(), v2->tail(), d1->head()))		  {/*		    assert(pointLeft2Lines(v1->getPrev()->getPrev()->head(),					   v1->getPrev()->head(),					   v1->getPrev()->tail(), d1->head()));*/		    diagonal_vertices[kk+1] = v1->getPrev();		  }	      }	    }					    	       }/*end if (root1 not equal to root 2)*/}  /*second pass,  now all diagoals should belong to the same polygon*/  for(i=0,k=0; i<num_diagonals; i++, k += 2)    if(removedDiagonals[i] == 0)       {	directedLine* v1=diagonal_vertices[k];	directedLine* v2=diagonal_vertices[k+1];	directedLine* ret_p1;	directedLine* ret_p2;	/*we ahve to determine whether v1 and v2 belong to the same polygon before	 *their structure are modified by connectDiagonal().	 */	directedLine *root1 = v1->findRoot();/*	directedLine *root2 = v2->findRoot();	assert(root1);      	assert(root2);      	assert(root1 == root2);  */    	sampledLine* generatedLine;	v1->connectDiagonal(v1,v2, &ret_p1, &ret_p2, &generatedLine, ret_polygons);	newSampledLines = generatedLine->insert(newSampledLines);	ret_polygons = ret_polygons->cutoffPolygon(root1);	ret_polygons = ret_p1->insertPolygon(ret_polygons);	ret_polygons = ret_p2->insertPolygon(ret_polygons);	for(Int j=i+1; j<num_diagonals; j++) 	  {	    if(removedDiagonals[j] ==0)	      {		directedLine* temp1=diagonal_vertices[2*j];		directedLine* temp2=diagonal_vertices[2*j+1];               if(temp1==v1 || temp1==v2 || temp2==v1 || temp2==v2)		if(! temp1->samePolygon(temp1, temp2))		  {		    /*if temp1 and temp2 are in different polygons, 		     *then one of them must be v1 or v2.		     */		    assert(temp1==v1 || temp1 == v2 || temp2==v1 || temp2 ==v2);		    if(temp1==v1) 		      {			diagonal_vertices[2*j] = v2->getPrev();		      }		    if(temp2==v1)		      {			diagonal_vertices[2*j+1] = v2->getPrev();		      }		    if(temp1==v2)		      {			diagonal_vertices[2*j] = v1->getPrev();		      		      }		    if(temp2==v2)		      {			diagonal_vertices[2*j+1] = v1->getPrev();		      }		  }	      }	  }            }  /*clean up spaces*/  free(array);  free(ranges);  free(diagonal_vertices);  free(removedDiagonals);  *retSampledLines = newSampledLines;  return ret_polygons;}	/*given a set of simple polygons where the interior  *is decided by left-hand principle, *return a range (sight) for each vertex. This is called *Trapezoidalization. */ void sweepY(Int nVertices, directedLine** sortedVertices, sweepRange** ret_ranges){  Int i;  /*for each vertex in the sorted list, update the binary search tree.   *and store the range information for each vertex.   */  treeNode* searchTree = NULL;  for(i=0; i<nVertices;i++)    {      directedLine* vert = sortedVertices[i];      directedLine* thisEdge = vert;      directedLine* prevEdge = vert->getPrev();            if(isBelow(vert, thisEdge) && isAbove(vert, prevEdge))	{	  /*case 1: this < v < prev	   *the polygon is going down at v, the interior is to 	   *the right hand side.	   * find the edge to the right of thisEdge for right range.           * delete thisEdge           * insert prevEdge	   */	  treeNode* thisNode = TreeNodeFind(searchTree, thisEdge, ( Int (*) (void *, void *))compEdges);	  assert(thisNode);	  treeNode* succ = TreeNodeSuccessor(thisNode);	  assert(succ);	  searchTree = TreeNodeDeleteSingleNode(searchTree, thisNode);	  searchTree = TreeNodeInsert(searchTree, TreeNodeMake(prevEdge), ( Int (*) (void *, void *))compEdges);	  ret_ranges[i] = sweepRangeMake(vert, 0, (directedLine*) (succ->key), 1);	}      else if(isAbove(vert, thisEdge) && isBelow(vert, prevEdge))	{	  /*case 2: this > v > prev	   *the polygon is going up at v, the interior is to 	   *the left hand side.	   * find the edge to the left of thisEdge for left range.           * delete prevEdge           * insert thisEdge	   */	  	  treeNode* prevNode = TreeNodeFind(searchTree, prevEdge, ( Int (*) (void *, void *))compEdges);	  assert(prevNode);	  treeNode* pred = TreeNodePredecessor(prevNode);	  searchTree = TreeNodeDeleteSingleNode(searchTree, prevNode);	  searchTree = TreeNodeInsert(searchTree, TreeNodeMake(thisEdge), ( Int (*) (void *, void *))compEdges);	  ret_ranges[i] = sweepRangeMake((directedLine*)(pred->key), 1, vert, 0);	}      else if(isAbove(vert, thisEdge) && isAbove(vert, prevEdge))	{	  /*case 3: insert both edges*/	  treeNode* thisNode = TreeNodeMake(thisEdge);	  treeNode* prevNode = TreeNodeMake(prevEdge);	  	  searchTree = TreeNodeInsert(searchTree, thisNode, ( Int (*) (void *, void *))compEdges);	  searchTree = TreeNodeInsert(searchTree, prevNode, ( Int (*) (void *, void *))compEdges);	  	  if(compEdges(thisEdge, prevEdge)<0)  /*interior cusp*/	    {	      treeNode* leftEdge = TreeNodePredecessor(thisNode);	      treeNode* rightEdge = TreeNodeSuccessor(prevNode);	      ret_ranges[i] = sweepRangeMake( (directedLine*) leftEdge->key, 1, 					     (directedLine*) rightEdge->key, 1					     );	    }	  else /*exterior cusp*/	    {	      ret_ranges[i] = sweepRangeMake( prevEdge, 1, thisEdge, 1);	    }	}      else if(isBelow(vert, thisEdge) && isBelow(vert, prevEdge))	{	  /*case 4: delete both edges*/	  treeNode* thisNode = TreeNodeFind(searchTree, thisEdge, ( Int (*) (void *, void *))compEdges);	  treeNode* prevNode = TreeNodeFind(searchTree, prevEdge, ( Int (*) (void *, void *))compEdges);	  if(compEdges(thisEdge, prevEdge)>0) /*interior cusp*/	    {	      treeNode* leftEdge = TreeNodePredecessor(prevNode);	      treeNode* rightEdge = TreeNodeSuccessor(thisNode);	      ret_ranges[i] = sweepRangeMake( (directedLine*) leftEdge->key, 1, 					     (directedLine*) rightEdge->key, 1					     );	    }	  else /*exterior cusp*/	    {	      ret_ranges[i] = sweepRangeMake( thisEdge, 1, prevEdge, 1);	    }	  searchTree = TreeNodeDeleteSingleNode(searchTree, thisNode);	  searchTree = TreeNodeDeleteSingleNode(searchTree, prevNode);	}      else	{	  fprintf(stderr,"error in partitionY.C, invalid case\n");	  printf("vert is\n");	  vert->printSingle();	  printf("thisEdge is\n");	  thisEdge->printSingle();	  printf("prevEdge is\n");	  prevEdge->printSingle();	  	  exit(1);	}    }  /*finaly clean up space: delete the search tree*/  TreeNodeDeleteWholeTree(searchTree);}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -