📄 partitiony.cc
字号:
index++; } } return index;}/*for debug only*/ directedLine** DBGfindDiagonals(directedLine *polygons, Int& num_diagonals){ Int total_num_edges = 0; directedLine** array = polygons->toArrayAllPolygons(total_num_edges); quicksort( (void**)array, 0, total_num_edges-1, (Int (*)(void*, void*)) compInY); sweepRange** ranges = (sweepRange**) malloc(sizeof(sweepRange*) * total_num_edges); assert(ranges); sweepY(total_num_edges, array, ranges); directedLine** diagonal_vertices = (directedLine**) malloc(sizeof(directedLine*) * total_num_edges); assert(diagonal_vertices); findDiagonals(total_num_edges, array, ranges, num_diagonals, diagonal_vertices); num_diagonals=deleteRepeatDiagonals(num_diagonals, diagonal_vertices, diagonal_vertices); return diagonal_vertices;}/*partition into Y-monotone polygons*/directedLine* partitionY(directedLine *polygons, sampledLine **retSampledLines){ Int total_num_edges = 0; directedLine** array = polygons->toArrayAllPolygons(total_num_edges); quicksort( (void**)array, 0, total_num_edges-1, (Int (*)(void*, void*)) compInY); sweepRange** ranges = (sweepRange**) malloc(sizeof(sweepRange*) * (total_num_edges)); assert(ranges); sweepY(total_num_edges, array, ranges); /*the diagonal vertices are stored as: *v0-v1: 1st diagonal *v2-v3: 2nd diagonal *v5-v5: 3rd diagonal *... */ Int num_diagonals; /*number diagonals is < total_num_edges*total_num_edges*/ directedLine** diagonal_vertices = (directedLine**) malloc(sizeof(directedLine*) * total_num_edges*2/*total_num_edges*/); assert(diagonal_vertices); findDiagonals(total_num_edges, array, ranges, num_diagonals, diagonal_vertices); directedLine* ret_polygons = polygons; sampledLine* newSampledLines = NULL; Int i,k;num_diagonals=deleteRepeatDiagonals(num_diagonals, diagonal_vertices, diagonal_vertices); Int *removedDiagonals=(Int*)malloc(sizeof(Int) * num_diagonals); for(i=0; i<num_diagonals; i++) removedDiagonals[i] = 0; for(i=0,k=0; i<num_diagonals; i++,k+=2) { directedLine* v1=diagonal_vertices[k]; directedLine* v2=diagonal_vertices[k+1]; directedLine* ret_p1; directedLine* ret_p2; /*we ahve to determine whether v1 and v2 belong to the same polygon before *their structure are modified by connectDiagonal(). *//* directedLine *root1 = v1->findRoot(); directedLine *root2 = v2->findRoot(); assert(root1); assert(root2);*/directedLine* root1 = v1->rootLinkFindRoot();directedLine* root2 = v2->rootLinkFindRoot(); if(root1 != root2) { removedDiagonals[i] = 1; sampledLine* generatedLine; v1->connectDiagonal(v1,v2, &ret_p1, &ret_p2, &generatedLine, ret_polygons); newSampledLines = generatedLine->insert(newSampledLines);/* ret_polygons = ret_polygons->cutoffPolygon(root1); ret_polygons = ret_polygons->cutoffPolygon(root2); ret_polygons = ret_p1->insertPolygon(ret_polygons);root1->rootLinkSet(ret_p1);root2->rootLinkSet(ret_p1);ret_p1->rootLinkSet(NULL);ret_p2->rootLinkSet(ret_p1);*/ ret_polygons = ret_polygons->cutoffPolygon(root2);root2->rootLinkSet(root1);ret_p1->rootLinkSet(root1);ret_p2->rootLinkSet(root1); /*now that we have connected the diagonal v1 and v2, *we have to check those unprocessed diagonals which *have v1 or v2 as an end point. Notice that the head of v1 *has the same coodinates as the head of v2->prev, and the head of *v2 has the same coordinate as the head of v1->prev. *Suppose these is a diagonal (v1, x). If (v1,x) is still a valid *diagonal, then x should be on the left hand side of the directed line: *v1->prev->head -- v1->head -- v1->tail. Otherwise, (v1,x) should be *replaced by (v2->prev, x), that is, x is on the left of * v2->prev->prev->head, v2->prev->head, v2->prev->tail. */ Int ii, kk; for(ii=0, kk=0; ii<num_diagonals; ii++, kk+=2) if( removedDiagonals[ii]==0) { directedLine* d1=diagonal_vertices[kk]; directedLine* d2=diagonal_vertices[kk+1]; /*check d1, and replace diagonal_vertices[kk] if necessary*/ if(d1 == v1) { /*check if d2 is to left of v1->prev->head:v1->head:v1->tail*/ if(! pointLeft2Lines(v1->getPrev()->head(), v1->head(), v1->tail(), d2->head())) {/* assert(pointLeft2Lines(v2->getPrev()->getPrev()->head(), v2->getPrev()->head(), v2->getPrev()->tail(), d2->head()));*/ diagonal_vertices[kk] = v2->getPrev(); } } if(d1 == v2) { /*check if d2 is to left of v2->prev->head:v2->head:v2->tail*/ if(! pointLeft2Lines(v2->getPrev()->head(), v2->head(), v2->tail(), d2->head())) {/* assert(pointLeft2Lines(v1->getPrev()->getPrev()->head(), v1->getPrev()->head(), v1->getPrev()->tail(), d2->head()));*/ diagonal_vertices[kk] = v1->getPrev(); } } /*check d2 and replace diagonal_vertices[k+1] if necessary*/ if(d2 == v1) { /*check if d1 is to left of v1->prev->head:v1->head:v1->tail*/ if(! pointLeft2Lines(v1->getPrev()->head(), v1->head(), v1->tail(), d1->head())) {/* assert(pointLeft2Lines(v2->getPrev()->getPrev()->head(), v2->getPrev()->head(), v2->getPrev()->tail(), d1->head()));*/ diagonal_vertices[kk+1] = v2->getPrev(); } } if(d2 == v2) { /*check if d1 is to left of v2->prev->head:v2->head:v2->tail*/ if(! pointLeft2Lines(v2->getPrev()->head(), v2->head(), v2->tail(), d1->head())) {/* assert(pointLeft2Lines(v1->getPrev()->getPrev()->head(), v1->getPrev()->head(), v1->getPrev()->tail(), d1->head()));*/ diagonal_vertices[kk+1] = v1->getPrev(); } } } }/*end if (root1 not equal to root 2)*/} /*second pass, now all diagoals should belong to the same polygon*/ for(i=0,k=0; i<num_diagonals; i++, k += 2) if(removedDiagonals[i] == 0) { directedLine* v1=diagonal_vertices[k]; directedLine* v2=diagonal_vertices[k+1]; directedLine* ret_p1; directedLine* ret_p2; /*we ahve to determine whether v1 and v2 belong to the same polygon before *their structure are modified by connectDiagonal(). */ directedLine *root1 = v1->findRoot();/* directedLine *root2 = v2->findRoot(); assert(root1); assert(root2); assert(root1 == root2); */ sampledLine* generatedLine; v1->connectDiagonal(v1,v2, &ret_p1, &ret_p2, &generatedLine, ret_polygons); newSampledLines = generatedLine->insert(newSampledLines); ret_polygons = ret_polygons->cutoffPolygon(root1); ret_polygons = ret_p1->insertPolygon(ret_polygons); ret_polygons = ret_p2->insertPolygon(ret_polygons); for(Int j=i+1; j<num_diagonals; j++) { if(removedDiagonals[j] ==0) { directedLine* temp1=diagonal_vertices[2*j]; directedLine* temp2=diagonal_vertices[2*j+1]; if(temp1==v1 || temp1==v2 || temp2==v1 || temp2==v2) if(! temp1->samePolygon(temp1, temp2)) { /*if temp1 and temp2 are in different polygons, *then one of them must be v1 or v2. */ assert(temp1==v1 || temp1 == v2 || temp2==v1 || temp2 ==v2); if(temp1==v1) { diagonal_vertices[2*j] = v2->getPrev(); } if(temp2==v1) { diagonal_vertices[2*j+1] = v2->getPrev(); } if(temp1==v2) { diagonal_vertices[2*j] = v1->getPrev(); } if(temp2==v2) { diagonal_vertices[2*j+1] = v1->getPrev(); } } } } } /*clean up spaces*/ free(array); free(ranges); free(diagonal_vertices); free(removedDiagonals); *retSampledLines = newSampledLines; return ret_polygons;} /*given a set of simple polygons where the interior *is decided by left-hand principle, *return a range (sight) for each vertex. This is called *Trapezoidalization. */ void sweepY(Int nVertices, directedLine** sortedVertices, sweepRange** ret_ranges){ Int i; /*for each vertex in the sorted list, update the binary search tree. *and store the range information for each vertex. */ treeNode* searchTree = NULL; for(i=0; i<nVertices;i++) { directedLine* vert = sortedVertices[i]; directedLine* thisEdge = vert; directedLine* prevEdge = vert->getPrev(); if(isBelow(vert, thisEdge) && isAbove(vert, prevEdge)) { /*case 1: this < v < prev *the polygon is going down at v, the interior is to *the right hand side. * find the edge to the right of thisEdge for right range. * delete thisEdge * insert prevEdge */ treeNode* thisNode = TreeNodeFind(searchTree, thisEdge, ( Int (*) (void *, void *))compEdges); assert(thisNode); treeNode* succ = TreeNodeSuccessor(thisNode); assert(succ); searchTree = TreeNodeDeleteSingleNode(searchTree, thisNode); searchTree = TreeNodeInsert(searchTree, TreeNodeMake(prevEdge), ( Int (*) (void *, void *))compEdges); ret_ranges[i] = sweepRangeMake(vert, 0, (directedLine*) (succ->key), 1); } else if(isAbove(vert, thisEdge) && isBelow(vert, prevEdge)) { /*case 2: this > v > prev *the polygon is going up at v, the interior is to *the left hand side. * find the edge to the left of thisEdge for left range. * delete prevEdge * insert thisEdge */ treeNode* prevNode = TreeNodeFind(searchTree, prevEdge, ( Int (*) (void *, void *))compEdges); assert(prevNode); treeNode* pred = TreeNodePredecessor(prevNode); searchTree = TreeNodeDeleteSingleNode(searchTree, prevNode); searchTree = TreeNodeInsert(searchTree, TreeNodeMake(thisEdge), ( Int (*) (void *, void *))compEdges); ret_ranges[i] = sweepRangeMake((directedLine*)(pred->key), 1, vert, 0); } else if(isAbove(vert, thisEdge) && isAbove(vert, prevEdge)) { /*case 3: insert both edges*/ treeNode* thisNode = TreeNodeMake(thisEdge); treeNode* prevNode = TreeNodeMake(prevEdge); searchTree = TreeNodeInsert(searchTree, thisNode, ( Int (*) (void *, void *))compEdges); searchTree = TreeNodeInsert(searchTree, prevNode, ( Int (*) (void *, void *))compEdges); if(compEdges(thisEdge, prevEdge)<0) /*interior cusp*/ { treeNode* leftEdge = TreeNodePredecessor(thisNode); treeNode* rightEdge = TreeNodeSuccessor(prevNode); ret_ranges[i] = sweepRangeMake( (directedLine*) leftEdge->key, 1, (directedLine*) rightEdge->key, 1 ); } else /*exterior cusp*/ { ret_ranges[i] = sweepRangeMake( prevEdge, 1, thisEdge, 1); } } else if(isBelow(vert, thisEdge) && isBelow(vert, prevEdge)) { /*case 4: delete both edges*/ treeNode* thisNode = TreeNodeFind(searchTree, thisEdge, ( Int (*) (void *, void *))compEdges); treeNode* prevNode = TreeNodeFind(searchTree, prevEdge, ( Int (*) (void *, void *))compEdges); if(compEdges(thisEdge, prevEdge)>0) /*interior cusp*/ { treeNode* leftEdge = TreeNodePredecessor(prevNode); treeNode* rightEdge = TreeNodeSuccessor(thisNode); ret_ranges[i] = sweepRangeMake( (directedLine*) leftEdge->key, 1, (directedLine*) rightEdge->key, 1 ); } else /*exterior cusp*/ { ret_ranges[i] = sweepRangeMake( thisEdge, 1, prevEdge, 1); } searchTree = TreeNodeDeleteSingleNode(searchTree, thisNode); searchTree = TreeNodeDeleteSingleNode(searchTree, prevNode); } else { fprintf(stderr,"error in partitionY.C, invalid case\n"); printf("vert is\n"); vert->printSingle(); printf("thisEdge is\n"); thisEdge->printSingle(); printf("prevEdge is\n"); prevEdge->printSingle(); exit(1); } } /*finaly clean up space: delete the search tree*/ TreeNodeDeleteWholeTree(searchTree);}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -