📄 monochain.cc
字号:
{//printf("case 1\n"); //this<v and prev < v //delete both edges vert->isKey = 1; vert->keyY = keyY; treeNode* thisNode = TreeNodeFind(searchTree, vert, (Int (*) (void *, void *))compChains); vert->isKey = 0; vert->getPrev()->isKey = 1; vert->getPrev()->keyY = keyY; treeNode* prevNode = TreeNodeFind(searchTree, vert->getPrev(), (Int (*) (void *, void *))compChains); vert->getPrev()->isKey = 0; if(cuspType(dline) == 1)//interior cusp { treeNode* leftEdge = TreeNodePredecessor(prevNode); treeNode* rightEdge = TreeNodeSuccessor(thisNode); if(leftEdge == NULL || rightEdge == NULL) { errOccur = 1; goto JUMP_HERE; } directedLine* leftEdgeDline = ((monoChain* ) leftEdge->key)->find(keyY); directedLine* rightEdgeDline = ((monoChain* ) rightEdge->key)->find(keyY); ret_ranges[i] = sweepRangeMake(leftEdgeDline, 1, rightEdgeDline, 1); } else /*exterior cusp*/ { ret_ranges[i] = sweepRangeMake( dline, 1, dlinePrev, 1); } searchTree = TreeNodeDeleteSingleNode(searchTree, thisNode); searchTree = TreeNodeDeleteSingleNode(searchTree, prevNode); } else if(isAbove(dline, dline) && isAbove(dline, dlinePrev)) {//printf("case 2\n"); //insert both edges treeNode* thisNode = TreeNodeMake(vert); treeNode* prevNode = TreeNodeMake(vert->getPrev()); vert->isKey = 1; vert->keyY = keyY; searchTree = TreeNodeInsert(searchTree, thisNode, (Int (*) (void *, void *))compChains); vert->isKey = 0; vert->getPrev()->isKey = 1; vert->getPrev()->keyY = keyY; searchTree = TreeNodeInsert(searchTree, prevNode, (Int (*) (void *, void *))compChains); vert->getPrev()->isKey = 0; if(cuspType(dline) == 1) //interior cusp {//printf("cuspType is 1\n"); treeNode* leftEdge = TreeNodePredecessor(thisNode); treeNode* rightEdge = TreeNodeSuccessor(prevNode); if(leftEdge == NULL || rightEdge == NULL) { errOccur = 1; goto JUMP_HERE; }//printf("leftEdge is %i, rightEdge is %i\n", leftEdge, rightEdge); directedLine* leftEdgeDline = ((monoChain*) leftEdge->key)->find(keyY); directedLine* rightEdgeDline = ((monoChain*) rightEdge->key)->find(keyY); ret_ranges[i] = sweepRangeMake( leftEdgeDline, 1, rightEdgeDline, 1); } else //exterior cusp {//printf("cuspType is not 1\n"); ret_ranges[i] = sweepRangeMake(dlinePrev, 1, dline, 1); } } else { //printf("%i,%i\n", isAbove(dline, dline), isAbove(dline, dlinePrev)); errOccur = 1; goto JUMP_HERE; fprintf(stderr, "error in MC_sweepY\n"); exit(1); } } JUMP_HERE: //finally clean up space: delete the search tree TreeNodeDeleteWholeTree(searchTree); return errOccur;} void MC_findDiagonals(Int total_num_edges, monoChain** sortedVertices, sweepRange** ranges, Int& num_diagonals, directedLine** diagonal_vertices){ Int i,j,k; k=0; //reset 'current' of all the monoChains for(i=0; i<total_num_edges; i++) sortedVertices[i]->resetCurrent(); for(i=0; i<total_num_edges; i++) { directedLine* vert = sortedVertices[i]->getHead(); directedLine* thisEdge = vert; directedLine* prevEdge = vert->getPrev(); if(isBelow(vert, thisEdge) && isBelow(vert, prevEdge) && compEdges(prevEdge, thisEdge)<0) { //this is an upward interior cusp diagonal_vertices[k++] = vert; directedLine* leftEdge = ranges[i]->left; directedLine* rightEdge = ranges[i]->right; directedLine* leftVert = leftEdge; directedLine* rightVert = rightEdge->getNext(); assert(leftVert->head()[1] >= vert->head()[1]); assert(rightVert->head()[1] >= vert->head()[1]); directedLine* minVert = (leftVert->head()[1] <= rightVert->head()[1])?leftVert:rightVert; Int found = 0; for(j=i+1; j<total_num_edges; j++) { if(sortedVertices[j]->getHead()->head()[1] > minVert->head()[1]) break; if(sweepRangeEqual(ranges[i], ranges[j])) { found = 1; break; } } if(found) diagonal_vertices[k++] = sortedVertices[j]->getHead(); else diagonal_vertices[k++] = minVert; } else if(isAbove(vert, thisEdge) && isAbove(vert, prevEdge) && compEdges(prevEdge, thisEdge)>0) { //downward interior cusp diagonal_vertices[k++] = vert; directedLine* leftEdge = ranges[i]->left; directedLine* rightEdge = ranges[i]->right; directedLine* leftVert = leftEdge->getNext(); directedLine* rightVert = rightEdge; assert(leftVert->head()[1] <= vert->head()[1]); assert(rightVert->head()[1] <= vert->head()[1]); directedLine* maxVert = (leftVert->head()[1] > rightVert->head()[1])? leftVert:rightVert; Int found=0; for(j=i-1; j>=0; j--) { if(sortedVertices[j]->getHead()->head()[1] < maxVert->head()[1]) break; if(sweepRangeEqual(ranges[i], ranges[j])) { found = 1; break; } } if(found) diagonal_vertices[k++] = sortedVertices[j]->getHead(); else diagonal_vertices[k++] = maxVert; } } num_diagonals = k/2;} directedLine* MC_partitionY(directedLine *polygons, sampledLine **retSampledLines){//printf("enter mc_partitionY\n"); Int total_num_chains = 0; monoChain* loopList = directedLineLoopListToMonoChainLoopList(polygons); monoChain** array = loopList->toArrayAllLoops(total_num_chains); if(total_num_chains<=2) //there is just one single monotone polygon { loopList->deleteLoopList(); free(array); *retSampledLines = NULL; return polygons; }//loopList->printAllLoops();//printf("total_num_chains=%i\n", total_num_chains); quicksort( (void**)array, 0, total_num_chains-1, (Int (*)(void*, void*))compChainHeadInY);//printf("after quicksort\n"); sweepRange** ranges = (sweepRange**)malloc(sizeof(sweepRange*) * (total_num_chains)); assert(ranges); if(MC_sweepY(total_num_chains, array, ranges)) { loopList->deleteLoopList(); free(array); *retSampledLines = NULL; return NULL; }//printf("after MC_sweepY\n"); Int num_diagonals; /*number diagonals is < total_num_edges*total_num_edges*/ directedLine** diagonal_vertices = (directedLine**) malloc(sizeof(directedLine*) * total_num_chains*2/*total_num_edges*/); assert(diagonal_vertices);//printf("before call MC_findDiagonales\n"); MC_findDiagonals(total_num_chains, array, ranges, num_diagonals, diagonal_vertices);//printf("after call MC_findDia, num_diagnla=%i\n", num_diagonals); directedLine* ret_polygons = polygons; sampledLine* newSampledLines = NULL; Int i,k; num_diagonals=deleteRepeatDiagonals(num_diagonals, diagonal_vertices, diagonal_vertices);//drawDiagonals(num_diagonals, diagonal_vertices);//printf("diagoanls are \n");//for(i=0; i<num_diagonals; i++)// {// printf("(%f,%f)\n", diagonal_vertices[2*i]->head()[0], diagonal_vertices[2*i]->head()[1]);// printf("**(%f,%f)\n", diagonal_vertices[2*i+1]->head()[0], diagonal_vertices[2*i+1]->head()[1]);// } Int *removedDiagonals=(Int*)malloc(sizeof(Int) * num_diagonals); for(i=0; i<num_diagonals; i++) removedDiagonals[i] = 0;// printf("first pass\n"); for(i=0,k=0; i<num_diagonals; i++,k+=2) { directedLine* v1=diagonal_vertices[k]; directedLine* v2=diagonal_vertices[k+1]; directedLine* ret_p1; directedLine* ret_p2; /*we ahve to determine whether v1 and v2 belong to the same polygon before *their structure are modified by connectDiagonal(). *//* directedLine *root1 = v1->findRoot(); directedLine *root2 = v2->findRoot(); assert(root1); assert(root2);*/directedLine* root1 = v1->rootLinkFindRoot();directedLine* root2 = v2->rootLinkFindRoot(); if(root1 != root2) { removedDiagonals[i] = 1; sampledLine* generatedLine; v1->connectDiagonal(v1,v2, &ret_p1, &ret_p2, &generatedLine, ret_polygons); newSampledLines = generatedLine->insert(newSampledLines);/* ret_polygons = ret_polygons->cutoffPolygon(root1); ret_polygons = ret_polygons->cutoffPolygon(root2); ret_polygons = ret_p1->insertPolygon(ret_polygons);root1->rootLinkSet(ret_p1);root2->rootLinkSet(ret_p1);ret_p1->rootLinkSet(NULL);ret_p2->rootLinkSet(ret_p1);*/ ret_polygons = ret_polygons->cutoffPolygon(root2);root2->rootLinkSet(root1);ret_p1->rootLinkSet(root1);ret_p2->rootLinkSet(root1); /*now that we have connected the diagonal v1 and v2, *we have to check those unprocessed diagonals which *have v1 or v2 as an end point. Notice that the head of v1 *has the same coodinates as the head of v2->prev, and the head of *v2 has the same coordinate as the head of v1->prev. *Suppose these is a diagonal (v1, x). If (v1,x) is still a valid *diagonal, then x should be on the left hand side of the directed line: *v1->prev->head -- v1->head -- v1->tail. Otherwise, (v1,x) should be *replaced by (v2->prev, x), that is, x is on the left of * v2->prev->prev->head, v2->prev->head, v2->prev->tail. */ Int ii, kk; for(ii=0, kk=0; ii<num_diagonals; ii++, kk+=2) if( removedDiagonals[ii]==0) { directedLine* d1=diagonal_vertices[kk]; directedLine* d2=diagonal_vertices[kk+1]; /*check d1, and replace diagonal_vertices[kk] if necessary*/ if(d1 == v1) { /*check if d2 is to left of v1->prev->head:v1->head:v1->tail*/ if(! pointLeft2Lines(v1->getPrev()->head(), v1->head(), v1->tail(), d2->head())) {/* assert(pointLeft2Lines(v2->getPrev()->getPrev()->head(), v2->getPrev()->head(), v2->getPrev()->tail(), d2->head()));*/ diagonal_vertices[kk] = v2->getPrev(); } } if(d1 == v2) { /*check if d2 is to left of v2->prev->head:v2->head:v2->tail*/ if(! pointLeft2Lines(v2->getPrev()->head(), v2->head(), v2->tail(), d2->head())) {/* assert(pointLeft2Lines(v1->getPrev()->getPrev()->head(), v1->getPrev()->head(), v1->getPrev()->tail(), d2->head()));*/ diagonal_vertices[kk] = v1->getPrev(); } } /*check d2 and replace diagonal_vertices[k+1] if necessary*/ if(d2 == v1) { /*check if d1 is to left of v1->prev->head:v1->head:v1->tail*/ if(! pointLeft2Lines(v1->getPrev()->head(), v1->head(), v1->tail(), d1->head())) {/* assert(pointLeft2Lines(v2->getPrev()->getPrev()->head(), v2->getPrev()->head(), v2->getPrev()->tail(), d1->head()));*/ diagonal_vertices[kk+1] = v2->getPrev(); } } if(d2 == v2) { /*check if d1 is to left of v2->prev->head:v2->head:v2->tail*/ if(! pointLeft2Lines(v2->getPrev()->head(), v2->head(), v2->tail(), d1->head())) {/* assert(pointLeft2Lines(v1->getPrev()->getPrev()->head(), v1->getPrev()->head(), v1->getPrev()->tail(), d1->head()));*/ diagonal_vertices[kk+1] = v1->getPrev(); } } } }/*end if (root1 not equal to root 2)*/} /*second pass, now all diagoals should belong to the same polygon*///printf("second pass: \n");// for(i=0; i<num_diagonals; i++)// printf("%i ", removedDiagonals[i]); for(i=0,k=0; i<num_diagonals; i++, k += 2) if(removedDiagonals[i] == 0) { directedLine* v1=diagonal_vertices[k]; directedLine* v2=diagonal_vertices[k+1]; directedLine* ret_p1; directedLine* ret_p2; /*we ahve to determine whether v1 and v2 belong to the same polygon before *their structure are modified by connectDiagonal(). */ directedLine *root1 = v1->findRoot();/* directedLine *root2 = v2->findRoot(); assert(root1); assert(root2); assert(root1 == root2); */ sampledLine* generatedLine; v1->connectDiagonal(v1,v2, &ret_p1, &ret_p2, &generatedLine, ret_polygons); newSampledLines = generatedLine->insert(newSampledLines); ret_polygons = ret_polygons->cutoffPolygon(root1); ret_polygons = ret_p1->insertPolygon(ret_polygons); ret_polygons = ret_p2->insertPolygon(ret_polygons); for(Int j=i+1; j<num_diagonals; j++) { if(removedDiagonals[j] ==0) { directedLine* temp1=diagonal_vertices[2*j]; directedLine* temp2=diagonal_vertices[2*j+1]; if(temp1==v1 || temp1==v2 || temp2==v1 || temp2==v2) if(! temp1->samePolygon(temp1, temp2)) { /*if temp1 and temp2 are in different polygons, *then one of them must be v1 or v2. */ assert(temp1==v1 || temp1 == v2 || temp2==v1 || temp2 ==v2); if(temp1==v1) { diagonal_vertices[2*j] = v2->getPrev(); } if(temp2==v1) { diagonal_vertices[2*j+1] = v2->getPrev(); } if(temp1==v2) { diagonal_vertices[2*j] = v1->getPrev(); } if(temp2==v2) { diagonal_vertices[2*j+1] = v1->getPrev(); } } } } } //clean up loopList->deleteLoopList(); free(array); free(ranges); free(diagonal_vertices); free(removedDiagonals); *retSampledLines = newSampledLines; return ret_polygons;}
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -