⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 directedline.cc

📁 Mesa is an open-source implementation of the OpenGL specification - a system for rendering interacti
💻 CC
📖 第 1 页 / 共 2 页
字号:
}/*compare two vertices NOT lines! *A vertex is the head of a directed line. *(x_1, y_1) <= (x_2, y_2) if *either x_1 < x_2 *or	 x_1 == x_2 && y_1 < y_2. *return -1 if this->head() <= nl->head(), *return  1 otherwise */Int directedLine::compInX(directedLine* nl){  if(head()[0] < nl->head()[0]) return -1;  if(head()[0] == nl->head()[0] && head()[1] < nl->head()[1]) return -1;  return 1;}/*used by sort precedures */static Int compInY2(directedLine* v1, directedLine* v2){  return v1->compInY(v2);}#ifdef NOT_USEDstatic Int compInX(directedLine* v1, directedLine* v2){  return v1->compInX(v2);}#endif/*sort all the vertices NOT the lines! *a vertex is the head of a directed line */directedLine** directedLine::sortAllPolygons(){  Int total_num_edges = 0;  directedLine** array = toArrayAllPolygons(total_num_edges);  quicksort( (void**)array, 0, total_num_edges-1, (Int (*)(void *, void *)) compInY2);  return array;}void directedLine::printSingle(){  if(direction == INCREASING)    printf("direction is INCREASING\n");  else    printf("direction is DECREASING\n");  printf("head=%f,%f)\n", head()[0], head()[1]);  sline->print();}/*print one polygon*/void directedLine::printList(){  directedLine* temp;  printSingle();  for(temp = next; temp!=this; temp=temp->next)    temp->printSingle();}/*print all the polygons*/void directedLine::printAllPolygons(){  directedLine *temp;  for(temp = this; temp!=NULL; temp = temp->nextPolygon)    {      printf("polygon:\n");      temp->printList();    }}/*insert this polygon into the head of the old polygon List*/directedLine* directedLine::insertPolygon(directedLine* oldList){  /*this polygon is a root*/  setRootBit();  if(oldList == NULL) return this;  nextPolygon = oldList;/*  oldList->prevPolygon = this;*/  return this;}/*cutoff means delete. but we don't deallocate any space, *so we use cutoff instead of delete */directedLine* directedLine::cutoffPolygon(directedLine *p){  directedLine* temp;  directedLine* prev_polygon  = NULL;  if(p == NULL) return this;  for(temp=this; temp != p; temp = temp->nextPolygon)    {      if(temp == NULL)	{	  fprintf(stderr, "in cutoffPolygon, not found\n");	  exit(1);	}      prev_polygon = temp;    }/*  prev_polygon = p->prevPolygon;*/  p->resetRootBit();  if(prev_polygon == NULL) /*this is the one to cutoff*/    return nextPolygon;  else {    prev_polygon->nextPolygon = p->nextPolygon;    return this;  }}Int directedLine::numPolygons(){  if(nextPolygon == NULL) return 1;  else return 1+nextPolygon->numPolygons();}/*let  array[index ...] denote *all the edges in this polygon *return the next available index of array. */Int directedLine::toArraySinglePolygon(directedLine** array, Int index){  directedLine *temp;  array[index++] = this;  for(temp = next; temp != this; temp = temp->next)    {      array[index++] = temp;    }  return index;}/*the space is allocated. The caller is responsible for *deallocate the space. *total_num_edges is set to be the total number of edges of all polygons */directedLine** directedLine::toArrayAllPolygons(Int& total_num_edges){  total_num_edges=numEdgesAllPolygons();  directedLine** ret = (directedLine**) malloc(sizeof(directedLine*) * total_num_edges);  assert(ret);  directedLine *temp;  Int index = 0;  for(temp=this; temp != NULL; temp=temp->nextPolygon) {    index = temp->toArraySinglePolygon(ret, index);  }  return ret;}/*assume the polygon is a simple polygon, return *the area enclosed by it. *if thee order is counterclock wise, the area is positive. */Real directedLine::polyArea(){  directedLine* temp;  Real ret=0.0;  Real x1,y1,x2,y2;  x1 = this->head()[0];  y1 = this->head()[1];  x2 = this->next->head()[0];  y2 = this->next->head()[1];  ret = -(x2*y1-x1*y2);  for(temp=this->next; temp!=this; temp = temp->next)    {      x1 = temp->head()[0];      y1 = temp->head()[1];      x2 = temp->next->head()[0];      y2 = temp->next->head()[1];      ret += -( x2*y1-x1*y2);    }  return Real(0.5)*ret;}/*******************split or combine polygons begin********************//*conect a diagonal of a single simple polygon or  two simple polygons. *If the two vertices v1 (head) and v2 (head) are in the same simple polygon, *then we actually split the simple polygon into two polygons. *If instead two vertices velong to two difference polygons, *then we combine the  two polygons into one polygon. *It is upto the caller to decide whether this is a split or a *combination. * *Case Split: *split a single simple polygon into two simple polygons by *connecting a diagonal (two vertices). *v1, v2: the two vertices are the head() of the two directedLines. *  this routine generates one new sampledLine which is returned in *generatedLine, *and it generates two directedLines returned in ret_p1 and ret_p2. *ret_p1 and ret_p2 are used as the entry to the two new polygons. *Notice the caller should not deallocate the space of v2 and v2 after *calling this function, since all of the edges are connected to *ret_p1 or ret_p2. * *combine: *combine two simpolygons into one by connecting one diagonal. *the returned polygon is returned in ret_p1. *//*ARGSUSED*/void directedLine::connectDiagonal(directedLine* v1, directedLine* v2,			   directedLine** ret_p1,			   directedLine** ret_p2,			   sampledLine** generatedLine,			   directedLine* polygonList								   ){  sampledLine *nsline  = new sampledLine(2);  nsline->setPoint(0, v1->head());  nsline->setPoint(1, v2->head());  /*the increasing line is from v1 head to v2 head*/  directedLine* newLineInc = new directedLine(INCREASING, nsline);  directedLine* newLineDec = new directedLine(DECREASING, nsline);  directedLine* v1Prev = v1->prev;  directedLine* v2Prev = v2->prev;  v1	    ->prev = newLineDec;  v2Prev    ->next = newLineDec;  newLineDec->next = v1;  newLineDec->prev = v2Prev;  v2	    ->prev = newLineInc;  v1Prev    ->next = newLineInc;  newLineInc->next = v2;  newLineInc->prev = v1Prev;  *ret_p1 = newLineDec;  *ret_p2 = newLineInc;  *generatedLine = nsline;}//see the function connectDiangle/*ARGSUSED*/void directedLine::connectDiagonal_2slines(directedLine* v1, directedLine* v2,			   directedLine** ret_p1,			   directedLine** ret_p2,			   directedLine* polygonList								   ){  sampledLine *nsline  = new sampledLine(2);  sampledLine *nsline2	= new sampledLine(2);  nsline->setPoint(0, v1->head());  nsline->setPoint(1, v2->head());  nsline2->setPoint(0, v1->head());  nsline2->setPoint(1, v2->head());  /*the increasing line is from v1 head to v2 head*/  directedLine* newLineInc = new directedLine(INCREASING, nsline);  directedLine* newLineDec = new directedLine(DECREASING, nsline2);  directedLine* v1Prev = v1->prev;  directedLine* v2Prev = v2->prev;  v1	    ->prev = newLineDec;  v2Prev    ->next = newLineDec;  newLineDec->next = v1;  newLineDec->prev = v2Prev;  v2	    ->prev = newLineInc;  v1Prev    ->next = newLineInc;  newLineInc->next = v2;  newLineInc->prev = v1Prev;  *ret_p1 = newLineDec;  *ret_p2 = newLineInc;}Int directedLine::samePolygon(directedLine* v1, directedLine* v2){  if(v1 == v2) return 1;  directedLine *temp;  for(temp = v1->next; temp != v1; temp = temp->next)    {      if(temp == v2) return 1;    }  return 0;}directedLine* directedLine::findRoot(){  if(rootBit) return this;  directedLine* temp;  for(temp = next; temp != this; temp = temp->next)    if(temp -> rootBit ) return temp;  return NULL; /*should not happen*/}directedLine* directedLine::rootLinkFindRoot(){  directedLine* tempRoot;  directedLine* tempLink;  tempRoot = this;  tempLink = rootLink;  while(tempLink != NULL){    tempRoot = tempLink;    tempLink = tempRoot->rootLink;  }  return tempRoot;}/*******************split or combine polygons end********************//*****************IO stuff begin*******************//*format: *#polygons * #vertices *  vertices * #vertices *  vertices *... */void directedLine::writeAllPolygons(char* filename){  FILE* fp = fopen(filename, "w");  assert(fp);  Int nPolygons = numPolygons();  directedLine *root;  fprintf(fp, "%i\n", nPolygons);  for(root = this; root != NULL; root = root->nextPolygon)    {      directedLine *temp;      Int npoints=0;      npoints = root->get_npoints()-1;      for(temp = root->next; temp != root; temp=temp->next)	npoints += temp->get_npoints()-1;      fprintf(fp, "%i\n", npoints/*root->numEdges()*/);      for(Int i=0; i<root->get_npoints()-1; i++){	fprintf(fp, "%f ", root->getVertex(i)[0]);	fprintf(fp, "%f ", root->getVertex(i)[1]);      }      for(temp=root->next; temp != root; temp = temp->next)	{	  for(Int i=0; i<temp->get_npoints()-1; i++){	    fprintf(fp, "%f ", temp->getVertex(i)[0]);	    fprintf(fp, "%f ", temp->getVertex(i)[1]);	  }	  fprintf(fp,"\n");	}      fprintf(fp, "\n");    }  fclose(fp);}directedLine* readAllPolygons(char* filename){  Int i,j;  FILE* fp = fopen(filename, "r");  assert(fp);  Int nPolygons;  fscanf(fp, "%i", &nPolygons);  directedLine *ret = NULL;  for(i=0; i<nPolygons; i++)    {      Int nEdges;      fscanf(fp, "%i", &nEdges);      Real vert[2][2];      Real VV[2][2];      /*the first two vertices*/      fscanf(fp, "%f", &(vert[0][0]));      fscanf(fp, "%f", &(vert[0][1]));      fscanf(fp, "%f", &(vert[1][0]));      fscanf(fp, "%f", &(vert[1][1]));      VV[1][0] = vert[0][0];      VV[1][1] = vert[0][1];      sampledLine *sLine = new sampledLine(2, vert);      directedLine *thisPoly = new directedLine(INCREASING, sLine);thisPoly->rootLinkSet(NULL);      directedLine *dLine;      for(j=2; j<nEdges; j++)	{	  vert[0][0]=vert[1][0];	  vert[0][1]=vert[1][1];	  fscanf(fp, "%f", &(vert[1][0]));	  fscanf(fp, "%f", &(vert[1][1]));	  sLine = new sampledLine(2,vert);	  dLine = new directedLine(INCREASING, sLine);dLine->rootLinkSet(thisPoly);	  thisPoly->insert(dLine);	}      VV[0][0]=vert[1][0];      VV[0][1]=vert[1][1];      sLine = new sampledLine(2,VV);      dLine = new directedLine(INCREASING, sLine);dLine->rootLinkSet(thisPoly);      thisPoly->insert(dLine);      ret = thisPoly->insertPolygon(ret);    }  fclose(fp);  return ret;}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -