📄 polydbg.cc
字号:
/*** License Applicability. Except to the extent portions of this file are** made subject to an alternative license as permitted in the SGI Free** Software License B, Version 1.1 (the "License"), the contents of this** file are subject only to the provisions of the License. You may not use** this file except in compliance with the License. You may obtain a copy** of the License at Silicon Graphics, Inc., attn: Legal Services, 1600** Amphitheatre Parkway, Mountain View, CA 94043-1351, or at:**** http://oss.sgi.com/projects/FreeB**** Note that, as provided in the License, the Software is distributed on an** "AS IS" basis, with ALL EXPRESS AND IMPLIED WARRANTIES AND CONDITIONS** DISCLAIMED, INCLUDING, WITHOUT LIMITATION, ANY IMPLIED WARRANTIES AND** CONDITIONS OF MERCHANTABILITY, SATISFACTORY QUALITY, FITNESS FOR A** PARTICULAR PURPOSE, AND NON-INFRINGEMENT.**** Original Code. The Original Code is: OpenGL Sample Implementation,** Version 1.2.1, released January 26, 2000, developed by Silicon Graphics,** Inc. The Original Code is Copyright (c) 1991-2000 Silicon Graphics, Inc.** Copyright in any portions created by third parties is as indicated** elsewhere herein. All Rights Reserved.**** Additional Notice Provisions: The application programming interfaces** established by SGI in conjunction with the Original Code are The** OpenGL(R) Graphics System: A Specification (Version 1.2.1), released** April 1, 1999; The OpenGL(R) Graphics System Utility Library (Version** 1.3), released November 4, 1998; and OpenGL(R) Graphics with the X** Window System(R) (Version 1.3), released October 19, 1998. This software** was created using the OpenGL(R) version 1.2.1 Sample Implementation** published by SGI, but has not been independently verified as being** compliant with the OpenGL(R) version 1.2.1 Specification.***//**/#include <stdlib.h>#include <stdio.h>#include <math.h>#include "zlassert.h"#include "polyDBG.h"#ifdef __WATCOMC__#pragma warning 14 10#pragma warning 391 10#pragma warning 726 10#endifstatic Real area(Real A[2], Real B[2], Real C[2]){ Real Bx, By, Cx, Cy; Bx = B[0] - A[0]; By = B[1] - A[1]; Cx = C[0] - A[0]; Cy = C[1] - A[1]; return Bx*Cy - Cx*By;}Int DBG_isConvex(directedLine *poly){ directedLine* temp; if(area(poly->head(), poly->tail(), poly->getNext()->tail()) < 0.00000) return 0; for(temp = poly->getNext(); temp != poly; temp = temp->getNext()) { if(area(temp->head(), temp->tail(), temp->getNext()->tail()) < 0.00000) return 0; } return 1;}Int DBG_is_U_monotone(directedLine* poly){ Int n_changes = 0; Int prev_sign; Int cur_sign; directedLine* temp; cur_sign = compV2InX(poly->tail(), poly->head()); n_changes = (compV2InX(poly->getPrev()->tail(), poly->getPrev()->head()) != cur_sign); for(temp = poly->getNext(); temp != poly; temp = temp->getNext()) { prev_sign = cur_sign; cur_sign = compV2InX(temp->tail(), temp->head()); if(cur_sign != prev_sign) n_changes++; } if(n_changes ==2) return 1; else return 0;}/*if u-monotone, and there is a long horizontal edge*/Int DBG_is_U_direction(directedLine* poly){/* if(! DBG_is_U_monotone(poly)) return 0;*/ Int V_count = 0; Int U_count = 0; directedLine* temp; if( fabs(poly->head()[0] - poly->tail()[0]) <= fabs(poly->head()[1]-poly->tail()[1])) V_count += poly->get_npoints(); else U_count += poly->get_npoints(); /* else if(poly->head()[1] == poly->tail()[1]) U_count += poly->get_npoints(); */ for(temp = poly->getNext(); temp != poly; temp = temp->getNext()) { if( fabs(temp->head()[0] - temp->tail()[0]) <= fabs(temp->head()[1]-temp->tail()[1])) V_count += temp->get_npoints(); else U_count += temp->get_npoints(); /* if(temp->head()[0] == temp->tail()[0]) V_count += temp->get_npoints(); else if(temp->head()[1] == temp->tail()[1]) U_count += temp->get_npoints(); */ } if(U_count > V_count) return 1; else return 0;}/*given two line segments, determine whether *they intersect each other or not. *return 1 if they do, *return 0 otherwise */Int DBG_edgesIntersect(directedLine* l1, directedLine* l2){ if(l1->getNext() == l2) { if(area(l1->head(), l1->tail(), l2->tail()) == 0) //colinear { if( (l1->tail()[0] - l1->head()[0])*(l2->tail()[0]-l2->head()[0]) + (l1->tail()[1] - l1->head()[1])*(l2->tail()[1]-l2->head()[1]) >=0) return 0; //not intersect else return 1; } //else we use the normal code } else if(l1->getPrev() == l2) { if(area(l2->head(), l2->tail(), l1->tail()) == 0) //colinear { if( (l2->tail()[0] - l2->head()[0])*(l1->tail()[0]-l1->head()[0]) + (l2->tail()[1] - l2->head()[1])*(l1->tail()[1]-l1->head()[1]) >=0) return 0; //not intersect else return 1; } //else we use the normal code } else //the two edges are not connected { if((l1->head()[0] == l2->head()[0] && l1->head()[1] == l2->head()[1]) || (l1->tail()[0] == l2->tail()[0] && l1->tail()[1] == l2->tail()[1])) return 1; } if( ( area(l1->head(), l1->tail(), l2->head()) * area(l1->head(), l1->tail(), l2->tail()) < 0 ) && ( area(l2->head(), l2->tail(), l1->head()) *area(l2->head(), l2->tail(), l1->tail()) < 0 ) ) return 1; else return 0;}/*whether AB and CD intersect *return 1 if they do *retur 0 otheriwse */Int DBG_edgesIntersectGen(Real A[2], Real B[2], Real C[2], Real D[2]){ if( ( area(A, B, C) * area(A,B,D) <0 ) && ( area(C,D,A) * area(C,D,B) < 0 ) ) return 1; else return 0;}/*determien whether (A,B) interesect chain[start] to [end] */Int DBG_intersectChain(vertexArray* chain, Int start, Int end, Real A[2], Real B[2]){ Int i; for(i=start; i<=end-2; i++) if(DBG_edgesIntersectGen(chain->getVertex(i), chain->getVertex(i+1), A, B)) return 1; return 0;}/*determine whether a polygon intersect itself or not *return 1 is it does, * 0 otherwise */Int DBG_polygonSelfIntersect(directedLine* poly){ directedLine* temp1; directedLine* temp2; temp1=poly; for(temp2=temp1->getNext(); temp2 != temp1; temp2=temp2->getNext()) { if(DBG_edgesIntersect(temp1, temp2)) { return 1; } } for(temp1=poly->getNext(); temp1 != poly; temp1 = temp1->getNext()) for(temp2=temp1->getNext(); temp2 != temp1; temp2=temp2->getNext()) { if(DBG_edgesIntersect(temp1, temp2)) { return 1; } } return 0;}/*check whether a line segment intersects a polygon */Int DBG_edgeIntersectPoly(directedLine* edge, directedLine* poly){ directedLine* temp; if(DBG_edgesIntersect(edge, poly)) return 1; for(temp=poly->getNext(); temp != poly; temp=temp->getNext()) if(DBG_edgesIntersect(edge, temp)) return 1; return 0;}/*check whether two polygons intersect */Int DBG_polygonsIntersect(directedLine* p1, directedLine* p2){ directedLine* temp; if(DBG_edgeIntersectPoly(p1, p2)) return 1; for(temp=p1->getNext(); temp!= p1; temp = temp->getNext()) if(DBG_edgeIntersectPoly(temp, p2)) return 1; return 0;}/*check whether there are polygons intersecting each other in *a list of polygons */Int DBG_polygonListIntersect(directedLine* pList){ directedLine *temp; for(temp=pList; temp != NULL; temp = temp->getNextPolygon()) if(DBG_polygonSelfIntersect(temp)) return 1; directedLine* temp2; for(temp=pList; temp!=NULL; temp=temp->getNextPolygon()) { for(temp2=temp->getNextPolygon(); temp2 != NULL; temp2=temp2->getNextPolygon()) if(DBG_polygonsIntersect(temp, temp2)) return 1; } return 0;}Int DBG_isCounterclockwise(directedLine* poly){ return (poly->polyArea() > 0);}/*ray: v0 with direction (dx,dy). *edge: v1-v2. * the extra point v10[2] is given for the information at *v1. Basically this edge is connectd to edge * v10-v1. If v1 is on the ray, * then we need v10 to determine whether this ray intersects * the edge or not (that is, return 1 or return 0). * If v1 is on the ray, then if v2 and v10 are on the same side of the ray, * we return 0, otherwise return 1. *For v2, if v2 is on the ray, we always return 0. *Notice that v1 and v2 are not symmetric. So the edge is directed!!! * The purpose for this convention is such that: a point is inside a polygon * if and only if it intersets with odd number of edges. */Int DBG_rayIntersectEdge(Real v0[2], Real dx, Real dy, Real v10[2], Real v1[2], Real v2[2]){/*if( (v1[1] >= v0[1] && v2[1]<= v0[1] ) ||(v2[1] >= v0[1] && v1[1]<= v0[1] ) ) printf("rayIntersectEdge, *********\n");*/ Real denom = (v2[0]-v1[0])*(-dy) - (v2[1]-v1[1]) * (-dx); Real nomRay = (v2[0]-v1[0]) * (v0[1] - v1[1]) - (v2[1]-v1[1])*(v0[0]-v1[0]); Real nomEdge = (v0[0]-v1[0]) * (-dy) - (v0[1]-v1[1])*(-dx); /*if the ray is parallel to the edge, return 0: not intersect*/ if(denom == 0.0) return 0; /*if v0 is on the edge, return 0: not intersect*/ if(nomRay == 0.0) return 0; /*if v1 is on the positive ray, and the neighbor of v1 crosses the ray *return 1: intersect */ if(nomEdge == 0) { /*v1 is on the positive or negative ray*//* printf("v1 is on the ray\n");*/ if(dx*(v1[0]-v0[0])>=0 && dy*(v1[1]-v0[1])>=0) /*v1 on positive ray*/ { if(area(v0, v1, v10) * area(v0, v1, v2) >0) return 0; else return 1; } else /*v1 on negative ray*/ return 0; } /*if v2 is on the ray, always return 0: not intersect*/ if(nomEdge == denom) {/* printf("v2 is on the ray\n");*/ return 0; }
⌨️ 快捷键说明
复制代码
Ctrl + C
搜索代码
Ctrl + F
全屏模式
F11
切换主题
Ctrl + Shift + D
显示快捷键
?
增大字号
Ctrl + =
减小字号
Ctrl + -