⭐ 欢迎来到虫虫下载站! | 📦 资源下载 📁 资源专辑 ℹ️ 关于我们
⭐ 虫虫下载站

📄 normal.c

📁 Mesa is an open-source implementation of the OpenGL specification - a system for rendering interacti
💻 C
字号:
/* * SGI FREE SOFTWARE LICENSE B (Version 2.0, Sept. 18, 2008) * Copyright (C) 1991-2000 Silicon Graphics, Inc. All Rights Reserved. * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice including the dates of first publication and * either this permission notice or a reference to * http://oss.sgi.com/projects/FreeB/ * shall be included in all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * SILICON GRAPHICS, INC. BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, * WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF * OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Except as contained in this notice, the name of Silicon Graphics, Inc. * shall not be used in advertising or otherwise to promote the sale, use or * other dealings in this Software without prior written authorization from * Silicon Graphics, Inc. *//*** Author: Eric Veach, July 1994.***/#include "gluos.h"#include "mesh.h"#include "tess.h"#include "normal.h"#include <math.h>#include <assert.h>#define TRUE 1#define FALSE 0#define Dot(u,v)	(u[0]*v[0] + u[1]*v[1] + u[2]*v[2])#if 0static void Normalize( GLdouble v[3] ){  GLdouble len = v[0]*v[0] + v[1]*v[1] + v[2]*v[2];  assert( len > 0 );  len = sqrt( len );  v[0] /= len;  v[1] /= len;  v[2] /= len;}#endif#undef	ABS#define ABS(x)	((x) < 0 ? -(x) : (x))static int LongAxis( GLdouble v[3] ){  int i = 0;  if( ABS(v[1]) > ABS(v[0]) ) { i = 1; }  if( ABS(v[2]) > ABS(v[i]) ) { i = 2; }  return i;}static void ComputeNormal( GLUtesselator *tess, GLdouble norm[3] ){  GLUvertex *v, *v1, *v2;  GLdouble c, tLen2, maxLen2;  GLdouble maxVal[3], minVal[3], d1[3], d2[3], tNorm[3];  GLUvertex *maxVert[3], *minVert[3];  GLUvertex *vHead = &tess->mesh->vHead;  int i;  maxVal[0] = maxVal[1] = maxVal[2] = -2 * GLU_TESS_MAX_COORD;  minVal[0] = minVal[1] = minVal[2] = 2 * GLU_TESS_MAX_COORD;  for( v = vHead->next; v != vHead; v = v->next ) {    for( i = 0; i < 3; ++i ) {      c = v->coords[i];      if( c < minVal[i] ) { minVal[i] = c; minVert[i] = v; }      if( c > maxVal[i] ) { maxVal[i] = c; maxVert[i] = v; }    }  }  /* Find two vertices separated by at least 1/sqrt(3) of the maximum   * distance between any two vertices   */  i = 0;  if( maxVal[1] - minVal[1] > maxVal[0] - minVal[0] ) { i = 1; }  if( maxVal[2] - minVal[2] > maxVal[i] - minVal[i] ) { i = 2; }  if( minVal[i] >= maxVal[i] ) {    /* All vertices are the same -- normal doesn't matter */    norm[0] = 0; norm[1] = 0; norm[2] = 1;    return;  }  /* Look for a third vertex which forms the triangle with maximum area   * (Length of normal == twice the triangle area)   */  maxLen2 = 0;  v1 = minVert[i];  v2 = maxVert[i];  d1[0] = v1->coords[0] - v2->coords[0];  d1[1] = v1->coords[1] - v2->coords[1];  d1[2] = v1->coords[2] - v2->coords[2];  for( v = vHead->next; v != vHead; v = v->next ) {    d2[0] = v->coords[0] - v2->coords[0];    d2[1] = v->coords[1] - v2->coords[1];    d2[2] = v->coords[2] - v2->coords[2];    tNorm[0] = d1[1]*d2[2] - d1[2]*d2[1];    tNorm[1] = d1[2]*d2[0] - d1[0]*d2[2];    tNorm[2] = d1[0]*d2[1] - d1[1]*d2[0];    tLen2 = tNorm[0]*tNorm[0] + tNorm[1]*tNorm[1] + tNorm[2]*tNorm[2];    if( tLen2 > maxLen2 ) {      maxLen2 = tLen2;      norm[0] = tNorm[0];      norm[1] = tNorm[1];      norm[2] = tNorm[2];    }  }  if( maxLen2 <= 0 ) {    /* All points lie on a single line -- any decent normal will do */    norm[0] = norm[1] = norm[2] = 0;    norm[LongAxis(d1)] = 1;  }}static void CheckOrientation( GLUtesselator *tess ){  GLdouble area;  GLUface *f, *fHead = &tess->mesh->fHead;  GLUvertex *v, *vHead = &tess->mesh->vHead;  GLUhalfEdge *e;  /* When we compute the normal automatically, we choose the orientation   * so that the the sum of the signed areas of all contours is non-negative.   */  area = 0;  for( f = fHead->next; f != fHead; f = f->next ) {    e = f->anEdge;    if( e->winding <= 0 ) continue;    do {      area += (e->Org->s - e->Dst->s) * (e->Org->t + e->Dst->t);      e = e->Lnext;    } while( e != f->anEdge );  }  if( area < 0 ) {    /* Reverse the orientation by flipping all the t-coordinates */    for( v = vHead->next; v != vHead; v = v->next ) {      v->t = - v->t;    }    tess->tUnit[0] = - tess->tUnit[0];    tess->tUnit[1] = - tess->tUnit[1];    tess->tUnit[2] = - tess->tUnit[2];  }}#ifdef FOR_TRITE_TEST_PROGRAM#include <stdlib.h>extern int RandomSweep;#define S_UNIT_X	(RandomSweep ? (2*drand48()-1) : 1.0)#define S_UNIT_Y	(RandomSweep ? (2*drand48()-1) : 0.0)#else#if defined(SLANTED_SWEEP)/* The "feature merging" is not intended to be complete.  There are * special cases where edges are nearly parallel to the sweep line * which are not implemented.  The algorithm should still behave * robustly (ie. produce a reasonable tesselation) in the presence * of such edges, however it may miss features which could have been * merged.  We could minimize this effect by choosing the sweep line * direction to be something unusual (ie. not parallel to one of the * coordinate axes). */#define S_UNIT_X	0.50941539564955385	/* Pre-normalized */#define S_UNIT_Y	0.86052074622010633#else#define S_UNIT_X	1.0#define S_UNIT_Y	0.0#endif#endif/* Determine the polygon normal and project vertices onto the plane * of the polygon. */void __gl_projectPolygon( GLUtesselator *tess ){  GLUvertex *v, *vHead = &tess->mesh->vHead;  GLdouble norm[3];  GLdouble *sUnit, *tUnit;  int i, computedNormal = FALSE;  norm[0] = tess->normal[0];  norm[1] = tess->normal[1];  norm[2] = tess->normal[2];  if( norm[0] == 0 && norm[1] == 0 && norm[2] == 0 ) {    ComputeNormal( tess, norm );    computedNormal = TRUE;  }  sUnit = tess->sUnit;  tUnit = tess->tUnit;  i = LongAxis( norm );#if defined(FOR_TRITE_TEST_PROGRAM) || defined(TRUE_PROJECT)  /* Choose the initial sUnit vector to be approximately perpendicular   * to the normal.   */  Normalize( norm );  sUnit[i] = 0;  sUnit[(i+1)%3] = S_UNIT_X;  sUnit[(i+2)%3] = S_UNIT_Y;  /* Now make it exactly perpendicular */  w = Dot( sUnit, norm );  sUnit[0] -= w * norm[0];  sUnit[1] -= w * norm[1];  sUnit[2] -= w * norm[2];  Normalize( sUnit );  /* Choose tUnit so that (sUnit,tUnit,norm) form a right-handed frame */  tUnit[0] = norm[1]*sUnit[2] - norm[2]*sUnit[1];  tUnit[1] = norm[2]*sUnit[0] - norm[0]*sUnit[2];  tUnit[2] = norm[0]*sUnit[1] - norm[1]*sUnit[0];  Normalize( tUnit );#else  /* Project perpendicular to a coordinate axis -- better numerically */  sUnit[i] = 0;  sUnit[(i+1)%3] = S_UNIT_X;  sUnit[(i+2)%3] = S_UNIT_Y;  tUnit[i] = 0;  tUnit[(i+1)%3] = (norm[i] > 0) ? -S_UNIT_Y : S_UNIT_Y;  tUnit[(i+2)%3] = (norm[i] > 0) ? S_UNIT_X : -S_UNIT_X;#endif  /* Project the vertices onto the sweep plane */  for( v = vHead->next; v != vHead; v = v->next ) {    v->s = Dot( v->coords, sUnit );    v->t = Dot( v->coords, tUnit );  }  if( computedNormal ) {    CheckOrientation( tess );  }}

⌨️ 快捷键说明

复制代码 Ctrl + C
搜索代码 Ctrl + F
全屏模式 F11
切换主题 Ctrl + Shift + D
显示快捷键 ?
增大字号 Ctrl + =
减小字号 Ctrl + -